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Postglacial Land Uplift Model and 
System Definition for the New 

Swedish Height System RH 2000 

 

Abstract 

The work to compute the third precise levelling in Sweden has 
mainly been performed as a Nordic cooperation under the umbrella 
of the Nordic Geodetic Commission (NKG) within the Working 
Group for Height Determination. It includes the compilation of the 
Baltic Levelling Ring, consisting of precise levellings from all the 
Nordic and Baltic countries as well as Poland, Germany and the 
Netherlands. Due to the acute need of a new system, Sweden had to 
finalise the project at the beginning of 2005. It was decided that the 
Swedish height system (frame) RH 2000 should be a realisation of the 
European Vertical Reference System (EVRS) using the Normaal 
Amsterdams Peil (NAP) as zero level. Presupposing these choices, 
the most crucial part of the definition of RH 2000 is the specification 
of a model for the reduction of postglacial rebound.  

The main purpose of this report is to discuss the system definition 
and to present the work to construct a suitable land uplift model for 
the RH 2000 adjustment of the Baltic Levelling Ring. The path 
leading to the model is treated in great detail. The final uplift model 
is a combination of the geophysical model of Lambeck, Smither and 
Ekman with the mathematical model of Vestøl. We also analyse the 
consequences of the chosen definition and land uplift model by 
comparing the resulting heights to Mean Sea Level in the Nordic and 
Baltic Seas and to a few other height systems.  

The land uplift model was adopted as a Nordic model by the NKG in 
2006 and was then renamed from RH 2000 LU to NKG2005LU. The 
RH 2000 adjustment of the BLR has also been accepted as giving the 
final result of the BLR project. 
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1. Introduction  
 

1.1 The postglacial rebound of Fennoscandia 
The postglacial uplift of Fennoscandia has been extensively studied 
during the last two hundred years; see Ekman (1991) for a historical 
review. Until recently, the most important way to determine the 
vertical uplift has been to utilise sea and lake level observations 
together with repeated precise levellings. For instance, the model 
presented by Ekman (1996) was derived using high quality sea level 
observations from 58 tide gauges in the Baltic and surrounding seas, 
lake level observations and repeated precise levellings from the 
Nordic countries. The postglacial land uplift can also be determined 
using GPS and other space geodetic techniques. One notable example 
in this direction is provided by the BIFROST project (e.g. Johansson 
et al. 2002), in which the rebound is observed at approximately 50 
permanent GPS stations that cover more or less the whole of the 
Fennoscandian area. In the beginning (the project in question started 
1993), the uplift rates from GPS were not as accurate as the tide 
gauge counterparts, but the situation naturally improves as time 
passes. In addition, most of the hardware problems, which degraded 
the quality in the earlier years, have been satisfactorily solved. 
Today, almost 10 years of continuous GPS observations are available 
and the accuracy improves constantly; see the latest uplift rates from 
the BIFROST project (Lidberg 2004). It should also be mentioned that 
other ways to determine the uplift exist, for instance to study ancient 
shore lines.  

No matter what land uplift observations that are utilised, basically 
two different ways exist to derive a continuous model from the 
discrete observations. The first option is to view the construction of a 
land uplift model as a pure interpolation (possibly extrapolation) 
problem. We have a set of observations with different geographic 
locations and quality, from which the best possible continuous 
surface is to be constructed using a suitable mathematical technique. 
In this report, a model of this type will be called a mathematical model. 
Danielsen (1998) developed a technique to determine the land uplift 
from “non-repeated” precise levellings, in which each line is 
observed only once, at the same time as different lines are observed 
at different epochs. The mathematical method used there is least 
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squares collocation with unknown parameters (Moritz 1980). This 
method was then refined and applied by Vestøl (2002, 2005), which 
finally included almost all available Nordic GPS, levelling and tide 
gauge observations for the construction of a land uplift model 
(Vestøl 2005). 

The second way to construct an uplift model is to make use of 
physical theories for how the Earth responds to the melting at the 
end of the last ice age. A model of this type will be called a 
geophysical model below. A number of geophysical models have been 
proposed during the years; see Ekman (1991) for a historical review. 
The latest ones are extremely complicated: The fewer assumptions 
concerning the Earth’s physical constitution that are used, the more 
complex the model becomes. One relevant example here is provided 
by the model of Lambeck et al. (1998), which was constructed to fit 
tide gauge and shore line observations.  An elastic lithosphere of a 
certain thickness with a comparatively high rigidity is taken to be 
situated over a two-layer mantle, which is assumed to behave as a 
viscous fluid for the time scales relevant for postglacial rebound. A 
model for the ice sheet is also devised. The geophysical model is 
tuned to the tide gauge observations by varying the lithosphere 
thickness, the viscosities of the two mantle layers and by modifying 
the ice model. Similar models have also been constructed in the 
BIFROST project (applying, however, the Lambeck ice model), but 
here GPS velocities have been used for tuning; see Milne et al. (2004). 
It should be noticed that a geophysical model makes it possible to 
take advantage of other knowledge than direct observations of the 
uplift. For instance, from the fact that the lithosphere is known to 
behave in a comparatively rigid way (elastic with high flexural 
rigidity), it follows that the uplift rate cannot vary arbitrarily, i.e. a 
smooth velocity field is implied. On the other hand, we will not 
accept physical parameters that disagree with our observations, 
considering of course the accuracy of these. In the context of 
constructing the best possible land uplift model, the use of a 
geophysical method may be viewed as a complicated interpolation 
(and extrapolation) scheme, where the interpolation is controlled by 
the physical parameters of the Earth (including the ice). Whether this 
interpolation is actually correct, is of course determined by how 
realistic the model is.  
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1.2 The Baltic Levelling Ring 
The processing of the latest precise levellings of Sweden, Finland and 
Norway has been made as a Nordic co-operation under the auspices 
of NKG. Denmark also contributed actively to the task, even though 
the Danish height system DVR 90 had already been finalised 
(Schmidt 2000). To be able to connect to the Normaal Amsterdams 
Peil (NAP), which is the traditional zero level for the United 
European Levelling Network (UELN), and to be able to determine 
the relations to our neighbouring countries, it was decided to extend 
the Nordic network with the precise levellings from the Baltic States, 
Poland, Northern Germany and the Netherlands. The non-Nordic 
data was provided by EUREF from the UELN-database.  

The whole network, which has been named the Baltic Levelling Ring 
(BLR), is illustrated in Fig. 1.1. Unfortunately, it has not been possible 
to close the ring with levelling observations around the Gulf of 
Finland. However, by means of other information (sea surface 
topography or GPS in combination with a geoid model), closing 
errors may still be computed. This amounts to a valuable check of the 
adjustment. It should be noticed, though, that only levelling 
observations are included in the final adjustment.  

 

Figure 1.1 The Baltic Levelling Ring (BLR) network. 
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1.3 Choice of system definition for RH 2000 
Now, due to the phenomenon of land uplift, it is crucial in the 
Nordic area to reduce all levelling observations to a common 
reference epoch. It might even be argued that the specification of 
uplift model constitutes the most important part of the system 
definition for a national height system in the Nordic countries. When 
the new height system RH 2000 was to be defined for the 
computation of the third precise levelling in Sweden, mainly the 
following key choices were discussed in collaboration with the other 
Nordic countries under the umbrella of the Nordic Geodetic 
Commission (NKG): 

• Land uplift model (mathematical, geophysical or a combination).  

• Reference epoch (middle of the observations, i.e. 1990, or 
2000.0) 

• Zero level (NAP or wait for a World Height System) 

• Type of heights (normal or some type of orthometric) 

• Permanent tide system (zero, non-tidal or mean) 

These discussions have been documented in a long row of 
publications; see for instance Mäkinen et al. (2004, 2005). In order to 
arrive at European height systems agreeing well with each other, it 
might seem suitable that the national systems should be defined 
according to the definitions of the Technical Working Group of the 
IAG Subcommission for Europe (EUREF); cf. Ihde and Augath 
(2001). One problem here, though, is that the 2005 definition of the 
European Vertical Reference System (EVRS) is very general; it 
includes almost any height system using normal heights together 
with a zero permanent tide. This gives each country a considerable 
freedom concerning how their national system should be defined. 
One way to realise EVRS was taken in the computation of the United 
European Levelling Network 95/98 (UELN 95/98), which resulted in 
the European Vertical Reference Frame (EVRF 2000). This realisation 
was made using the Normaal Amsterdams Peil (NAP) as zero level 
in the traditional European way. 

The system definition discussions within the NKG have been quite 
general (e.g. Mäkinen et al. 2004; Mäkinen 2004). It has for instance 
been questioned whether NAP is the most suitable way to fix the 
zero level. Is it not better to wait for a so-called World Height System 
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(WHS), which is fixed using GPS and a global geoid model of cm-
accuracy? From the Swedish perspective, it has not been possible to 
wait for such developments. Due to the extremely high requirements 
on the geoid model, it might also be questioned whether it will really 
become possible to determine a World Height System with sufficient 
accuracy in the foreseeable future. In any case, no World Height 
System will be available soon enough. For the final computation of 
the third precise levelling in Sweden, it was therefore decided to 
follow the then European recommendations available in 2005 as far 
as possible. This means that the resulting system (RH 2000) becomes 
a realisation of the European Vertical Reference System (EVRS), 
which is made according to similar principles as applied for the 
computation of the European Vertical Reference Frame (EVRF 2000). 
Consequently, it is already specified that the Normaal Amsterdams 
Peil (NAP) is used to define the zero level, that normal heights are 
utilised and that the system is of a zero permanent tide type. 
However, no EUREF recommendation was available in 2005 
concerning how the land uplift should be taken care of in the Nordic 
area nor of which reference epoch that should be utilised. In fact, in 
the computation of EVRF 2000, the levelling observations were not 
even reduced to a common epoch. This means that the Nordic Block 
in EVRF 2000 has the land uplift epoch 1960.0, to which the Swedish, 
Finnish and Norwegian observations were reduced before delivery 
to the UELN computing centre in 1980 (Mäkinen et al. 2004).  

It remains to choose a suitable land uplift model and a reference 
epoch to which all levelling observations are to be reduced. 
Concerning the epoch, it is naturally most optimal with the mean of 
all observations, since this will minimise the influence of errors in the 
uplift model; see for instance Ekman (1995). This question was 
decided in cooperation with the other Nordic countries. Now, due to 
political reasons, Finland did not consider it possible to use an epoch 
in the 1990ties. The reference epoch was therefore chosen to 2000.0, 
which is a reasonable compromise not too far removed from the 
mean of the observations, but sufficiently correct from a political 
point of view.  

1.4 Purpose and content 
The last and most important part of the system definition is how the 
land uplift model is chosen. It is the main purpose of this report to 
present the land uplift model that is used in the RH 2000 adjustment 
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of the Baltic Levelling Ring, which resulted in the new Swedish 
height system RH 2000. This task includes a detailed presentation of 
the relevant background and the work behind the model performed 
at Lantmäteriet (National Land Survey of Sweden) in cooperation 
with the Working group for height determination within the Nordic 
Geodetic Commission (NKG). It should be noticed that due to severe 
time limitations, it was neither possible to wait for the perfect model 
to emerge on the market (so to speak) nor to investigate all possible 
ways to construct new models from scratch. Instead it was decided to 
start from two already existing ones, namely the mathematical model 
of Vestøl (2005) and the geophysical counterpart of Lambeck et al. 
(1998), and to combine or modify them in such ways that the final 
model fulfils the present purpose sufficiently well. This means that 
the criteria for choosing the final model depend on how this affects 
the adjusted heights in RH 2000. If two models give almost exactly 
the same heights, they are considered as equally good. Notice, 
however, that this does not necessarily mean that the two models are 
equally good for all tasks.  

One special requirement on the uplift model stems from the fact that 
the adjustment of RH 2000 is made using levelling observations for 
the whole Baltic Levelling Ring network illustrated in Fig. 1.1, which 
includes observations from all countries around the Baltic Sea. This 
means that the land uplift model must cover a very large area. 
Unfortunately, the observations do not extend sufficiently far to 
make it possible to take advantage of Vestøl’s model as it is. A good 
way to extend Vestøl’s model, however, seems to be to make use of 
Lambeck’s geophysical model outside the area where Vestøl’s model 
is defined. This path was also chosen by the NKG height 
determination group. One such composite model was thus 
constructed by Karsten Engsager (NKG height determination 
working group email) in Denmark using least squares collocation. 
However, it is believed that it is far from evident how the two 
models should be combined. One specific purpose of this report is 
therefore to investigate a few different methods to extend Vestøl’s 
model outside its definition area using Lambeck’s geophysical 
model.  

Another alternative that was seriously considered within NKG was 
to utilise only Lambeck’s model. As mentioned above, this model is 
tuned to the tide gauges within the Nordic area. It should thus be 
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good along the coasts. In areas without tide gauges, however, the 
quality is more questionable. One advantage with using Lambeck’s 
model is that this one is geophysical. This means that it represents a 
reasonably realistic representation of the land uplift field, which 
takes advantage of other types of knowledge to make a realistic 
smoothing, interpolation and extrapolation of the tide gauge 
observations. It is another aim of this report to investigate the merits 
of Lambeck’s model by itself and to compare it to Vestøl’s 
counterpart. 

It is obviously important that the land uplift model is realistic: It 
should represent the uplift with as little observation errors as 
possible. As mentioned above, one way to obtain a realistic field is to 
use a geophysical model, but as no available geophysical model takes 
all the available data into account, it was finally decided to choose a 
mathematical model for RH 2000. One problem with this is that it is 
difficult to select the relevant parameters. As argued above, it follows 
from the high flexural rigidity of the lithosphere that the velocity 
field should be reasonably smooth. The mathematical model of 
Vestøl (2005), which is our starting point, is already smoothed to a 
certain degree (see Chapter 2). Another purpose of the present report 
is to investigate the question of smoothing a little further, and to find 
out how the amount of smoothing affects the adjusted RH 2000 
heights. Of course, there is no way to escape the observation errors in 
order to reach the “true” uplift, but it is nevertheless believed that it 
is important to take this question seriously. The tuning of the model 
by the choice of covariance function and apriori standard errors 
corresponds to the choice of physical Earth (and ice) parameters for a 
geophysical model. The strategy here is that the mathematical model 
should “look” realistic at the same time as it should fit the given 
observations as well as possible. It should be noticed, though, that 
the fit to the observations cannot be the only criterion for the 
construction of a mathematical model. It is always possible to choose 
a very rough model that fits all observations perfectly. Needless to 
say, such a model is useless for the present task. It would leave the 
door wide-open for old levelling errors to affect the new height 
system. 

As discussed above, the choice of uplift model is a very important 
part of the definition of RH 2000. The other four parameters in the 
above list were either decided on a European or a Nordic level. It is 
important to notice, though, that the specification of land uplift 
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model is not totally separated from the choice of zero level. Since the 
NAP is affected by the land uplift phenomenon (it sinks), it might be 
thought that the reference level itself should be corrected for the 
uplift. This, however, does not fit with the way NAP has been treated 
on the European level (EVRF 2000). Another purpose of the present 
report is to carefully delineate the 2005 definition of the European 
vertical reference system as well as of RH 2000, and to investigate the 
consequences of the land uplift in Amsterdam (NAP). It is further the 
aim is to investigate the final product of the chosen system 
definition, i.e. the adjusted heights in RH 2000, which includes 
comparisons with the old Swedish height system RH 70,  with 
EVRF 2000 and with the new Danish system DVR 90 (Schmidt 2000). 
Another consequence is that the definition determines the height of 
the Mean Sea Level (MSL). It is finally also the purpose to study the 
MSL for a few tide gauges along the Swedish coast.  

The report has been organised in the following way. The basic uplift 
observations are introduced in Chapter 2, which also presents and 
analyses the Vestøl and Lambeck models. Chapter 3 then treats the 
work performed at Lantmäteriet to find a suitable land uplift model 
for the RH 2000 computation of the Baltic Levelling Ring. This 
includes work starting not only from Vestøl’s model in gridded form, 
but also from the estimated uplift values in the observation points 
themselves. It is constantly assumed that Vestøl’s model is extended 
with Lambeck’s counterpart. Chapter 3 also contains investigations 
of different interpolation methods and the degree of smoothing. It 
ends with a small study of the way the interpolation schemes affect 
the closing errors around the Gulf of Bothnia and the Baltic Sea. In 
Chapter 4, the definitions used on the European level (EVRS and 
EVRF 2000) in 2005 are first described in more detail compared to 
above, which is followed by a discussion of the definition of 
RH 2000. In connection with this, the consequences of the land 
sinking at the NAP are discussed and investigated numerically. After 
the final model has been chosen, it is evaluated by a detailed 
comparison with the observations. The adjusted RH 2000 heights are 
also compared with those of the old Swedish height system RH 70 
and with EVRF 2000. A small investigation of the height of the Mean 
Sea Level (MSL) along the Swedish coast is also presented. The 
report ends with a general discussion and summary.  
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1.5 Note added in 2007 
This report was written in its entirety during 2005, but is not 
published until now (2007). In the original version, the RH 2000 Land 
Uplift model was called RH 2000 LU. Since then the land uplift 
model has been adopted as a Nordic model by the NKG and has 
received the new name NKG2005LU. The RH 2000 adjustment has 
also been accepted as giving the final solution of the BLR project. In 
order to avoid a complete rewriting, the report is kept in its original 
shape. The only exceptions are:  

• RH 2000 LU is renamed NKG2005LU throughout the report. 

• The addition of this and a similar one at the end of the report, 
which explains the development since 2005. 

• The year 2005 is added to some statements to indicate that 
they refer to the situation that year, for instance the 2005 
version of the European Vertical Reference System (EVRS). 
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2. Vestøl’s and Lambeck’s uplift models 
The main purpose of this chapter is to present and analyse the land 
uplift models presented by Vestøl (2005) and Lambeck et al. (1998), 
which are the starting points for the present work. As the land uplift 
observations used by Vestøl (ibid.) will be applied also to evaluate 
Lambeck’s model, the chapter starts with giving a short account of 
the observations. After that, Vestøl’s and Lambeck’s models are 
treated in turn. 

2.1 Available observations  
The basic observations applied by Vestøl are the apparent land uplift 
rates at 58 tide gauges published by Ekman (1996), 55 absolute GPS 
velocities from the BIFROST project (Lidberg 2004) and precise 
levelling observations from Sweden, Finland and Norway. 

The apparent uplift rates at the 58 tide gauges were computed using 
linear regression by Ekman (1996). All observations were reduced to 
the common 100 years period 1892–1991 in order to eliminate 
oceanographic changes. This interval was chosen so that extreme 
high and low water years are avoided at the beginning and end of 
the period. To correct those sea level series that do not cover the 
whole period, two reference stations were used, one in the Baltic Sea 
(Stockholm) and one in the North Sea (Smögen). The resulting 
apparent uplift values are summarised in Fig. 2.1. The reader is 
referred to Ekman (1996, Table 1) for more details. As can be seen, 
the spatial distribution of the tide gauges is dense in the Baltic Sea 
and its transition into the North Sea, while it is less dense in the 
Norwegian and Arctic Seas. Only two mareographs are situated 
north of Trondheim in the latter case. The standard error for the 
uplift values is estimated by Ekman (1996) to 0.2 mm/year, even 
though the formal standard errors might be considerably smaller for 
the differential uplift between neighbouring tide gauges. Ekman 
argues that various instrumental problems and long term 
oceanographic effects make it necessary to use a more pessimistic 
figure. In what follows, 0.2 mm/year is assumed representative for 
the standard errors of the tide gauge observations. It should finally 
be pointed out that the observations in Furuögrund (8.8 mm/year) 
and Oslo (4.1 mm/year) have been marked as outliers. These two 
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observations were excluded by Vestøl (2005) based on a detailed 
statistical analysis using all observations; see further the discussion 
in Subsection 2.2.2. Another feature that has been included in Fig. 2.1 
is a dividing line that is applied in Chapter 3 to neglect the 
southernmost observations. The reader is advised to neglect this line 
for the time being. It is needed in Chapter 3. 
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Figure 2.1: Apparent land uplift values at the tide gauges (Ekman 1996). 
Unit: mm/year. 
 

The next group of uplift observations comprises the vertical GPS 
velocities from the latest BIFROST solution, which were estimated by 
Lidberg (2004) at 55 permanent GPS stations quite evenly distributed 
over the uplift area. A summary of the absolute uplift values can be 
found in Fig. 2.2; see Tables 1 and 4 in Paper D, Lidberg (2004) for 
details. The GPS uplifts stem from a systematic recomputation of 
approximately 3000 days (covering almost 10 years) of GPS 
observations using the GAMIT/GLOBK software. Two characteristic 
features of this solution are that an elevation cut off angle of 10 
degrees is used and that the ambiguities are fixed to integers, 
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contrary to earlier BIFROST solutions, which were computed with 15 
degrees cut off as float solutions in GIPSY-OASIS (Johansson et al. 
2002). It should further be mentioned that only very few changes 
have been made at the GPS stations since 1998, which means that no 
major hardware jumps occur after this year. The fact that the whole 
time series was recomputed in a unified way can also be expected to 
reduce the presence of systematic effects. A remaining problem, 
however, is the accumulation of snow on top of the radomes, which 
has not yet been satisfactorily solved. During the winter period, a 
large number of observations are therefore excluded as outliers, 
particularly in the northern parts of Sweden. 
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Figure 2.2: Absolute land uplift values at the GPS-stations (Lidberg 2004). 
Unit: mm/year. 
 

Lidberg (2004) estimates standard errors for the velocities by first 
making linear regression of the edited time series. As these accuracy 
estimates assume zero correlation between the original observations 
(white noise distribution), the estimated standard errors are rescaled 
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by a factor of 2 to 5 to take into account the influence of correlations; 
see Lidberg (2004) for further details. The resulting standard errors 
range from approximately 0.2 mm/year for the stations with the 
longest series, exemplified by a typical SWEPOS station, to 0.6 
mm/year at some Norwegian and continental European stations. 
Lidberg then compares the estimated GPS velocities with absolute 
uplift values computed according to Ekman (1996) and Ekman and 
Mäkinen (1996a), and concludes that the real standard errors are a 
little higher than the rescaled formal counterparts. It might be 
considered realistic to assume a typical standard error of 0.3 – 0.4 
mm/year for a good SWEPOS station, and perhaps the double of 
that for the more questionable stations in the central parts of Europe.  

The final type of land uplift observation is the precise levelling data 
from Sweden, Finland and Norway. In both Sweden and Finland, 
three precise levellings have been performed. No systematic 
repeated levellings have been performed in Norway, but the 
observations nevertheless contain information on the land uplift, 
which is possible to estimate in case the rebound is modelled by 
some kind of continuous surface function, using for instance least 
squares collocation or a polynomial of suitable degree.  

The Norwegian and Finnish precise levellings will not be considered 
in detail in the present report. Instead we concentrate on the Swedish 
situation. The epochs and standard errors in the three Swedish 
precise levellings are summarised in Table 2.1, while the lines are 
illustrated in Fig. 2.3. As can be seen, the network of the 3rd levelling 
is extraordinarily dense and homogeneous, but this is not the case for 
the 1st and 2nd counterparts. It should be noticed that for large parts 
of Sweden, only the 2nd and 3rd precise levellings exist, which are 
separated in time by 30 years on an average. The real time 
differences range from 12 years in the south to 48 years in the 
northern parts of Sweden; see Fig. 2.4. To get a feeling for what 
accuracy that can be expected, a simple error propagation was made, 
assuming that the levellings are separated by 30 years and using the 
standard errors in Table 2.1. In this case the relative uplift difference 

can be determined with the standard error 0.063 ( )mm/ year km⋅ , 

which implies 0.45 mm/year for 50 km, 0.63 mm/year for 100 km 
and 0.89 mm/year for 200 km distance. Thus, assuming that the 
levelling errors are random, it is not possible to do better than 
approximately 0.5 mm/year (1 sigma) for those large areas covered 
by only the 2nd and 3rd levellings. Of course, if systematic and gross 
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errors are present, the errors are likely to increase even more. The 
most crucial problem with the second levelling is the low reliability, 
which implies that it is likely that a number of gross errors have not 
been detected and removed. The situation improves for the limited 
areas where all three levellings are available (see Fig. 2.3), but the fact 
that the quality of the 1st levelling is questionable (see Table 2.1), 
limits the accuracy also in this case. It should be pointed out that the 
above error propagation is made using the standard errors for 
unadjusted levelling lines. It is admitted that it would have been 
more correct to propagate the estimated standard errors for the 
adjusted height differences. However, due to the low redundancy of 
the first and second precise levellings, it is believed that the above 
results are fairly reasonable.  

Table 2.1: Some information on the repeated precise levellings in Sweden. 
The information on the 1st and 2nd levellings was taken from Ekman (1996). 
  

Levelling Time 
Mean 
Epoch 0ˆ [mm/ km]s  System 

1st 1886 – 1905 1892 4.4 RH 00 

2nd 1951 – 1967 1960 1.6 RH 70 

3rd 1979 – 2003 1990 1.0 RH 2000 

 

 

Figure 2.3: The levelling lines of the three precise levellings in 
Sweden. 
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Figure 2.4: The time differences between the second and third precise 
levellings in Sweden. Unit: mm/year. 
 

All observations used by Vestøl (2005), which have been introduced 
and discussed above, are finally summarised in Fig. 2.5. The most 
accurate source of information is still believed to be provided by the 
tide gauges, but the accuracy of GPS is not far behind. One clear 
advantage with the latter is that the permanent GPS stations are not 
limited to the seas. The SWEPOS stations in the central parts of 
Sweden are a very important complement to the tide gauge and 
repeated levelling observations. 
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Figure 2.5: Summary of all observations used by Vestøl (2005). The squares 
symbolise tide gauges, the triangles denote GPS stations and the crosses 
mean nodal points in levelling lines. Unit: mm/year. 

2.2 Vestøl’s mathematical model 
As mentioned in the introduction, Vestøl (2005) used all the above 
information to derive a mathematical model for Fennoscandia. The 
method, which is least squares collocation with unknown parameters 
(e.g. Moritz 1980), was investigated in this context by Danielsen 
(1989). The technique was then applied by Vestøl (2002) to estimate 
the postglacial uplift limited to Norway. Vestøl (2005) finally 
extended the model to the other Nordic countries and also included 
GPS observations from the BIFROST project. Below, the method is 
first summarised and discussed. After that, Vestøl’s model is 
presented and analysed.  
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2.2.1 Short description of Vestøl’s method 
A very good treatment of least squares collocation is provided by 
Moritz (1980), to which the reader is referred for details. Below a 
short summary is given, mainly to reach a position to be able to 
discuss the method of Vestøl (2005). The basic observation equation 
that applies in the present case, sometimes called the mixed model 
(Koch 1999), reads 

= + +l Ax Bs ε   (2.1) 

where  is the observation vector, l A  is the design matrix, x  is a 
vector with unknown parameters,  is a matrix that relates the 
spatially correlated signals in the vector  to the observations, and  
is the observation noise vector. It is assumed that the signal  has 

zero mean and covariance function 

B
s ε

s

( )PQψssC , where the latter 

depends only on the distance between the two points P and Q (i.e. it 
is homogeneous and isotropic). The random noise ε  is centred and 
has the covariance matrix D. In addition  and  are assumed 
independent. Now, the least squares collocation solution minimises 

s ε

1T
ss
− + Ts C s ε D ε1−

)

)ˆ

  (2.2) 

and is provided by 

( )( ) (ˆ
-1-1 -1T T T T

ss ssx = A BC B + D A A BC B + D l  (2.3) 

and 

   (2.4)  ( ) (ˆ
-1T T

ss sss = C B BC B + D l - Ax

It should be noticed that the vector  in the above equations only 
contains the signal in the spatial locations of the observations. This 
case, which corresponds to pure filtering of the observations, can 
easily be extended to prediction in an arbitrary point. The signal 

s

Ps  in 

the arbitrary point P is estimated by modifying the cross correlation 
part of Eq. (2.4) according to 

  ( ) ( ˆˆPs =
P

-1T T
s s ssC B BC B + D l - Ax )   (2.5) 

where 
Ps s

C  is a vector with covariances between the signal in P and 

in the observation points. If Eq. (2.5) is applied, a continuous surface 
is interpolated. If the covariance matrix D is non-zero, then the 
interpolation is smoothing and the observation errors are filtered. For 
error-free observations an exact interpolator is implied. It should be 
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T

)

mentioned that least squares collocation provides the unbiased 
solution with minimum variance, which is given by 

( )2
Psσ = +

P P P P

-1T T T
s s s s ss ss XXC -C B BC B + D BC HAC A H   (2.6) 

where 

 (
P

-1T T
s s ssH = C B BC B + D   (2.7) 

The covariance matrix for the unknown parameters is  

 ( )( ) 1−-1T T
XX ssC = A BC B + D A   (2.8) 

and the cross covariance between the parameters and signals is given 
by 

P

T T
Xs XXC = -C A H    (2.9) 

It is straightforward to derive covariance matrices also for other 
linear combinations of  and x Ps  using the law of error propagation. 

It should be noticed that least squares collocation with unknown 
parameters implies that the unknown parameters  are first 
estimated in Eq. (2.3) using standard least squares adjustment with a 
weight matrix modified to take into account the spatial correlations 
described by 

x

ssC . The “residuals” in the observation points  are 

then filtered using Eq. (2.4), which leads to the residuals after the 
signal part has been removed, i.e. to . The signal can 
then be interpolated to arbitrary locations using Eq. (2.5). It should be 
added that Vestøl does not solve for  and  at the observation 
points using Eqs. (2.3) and (2.4), but prefers the formulation 
according to Schwarz (1976). This, however, changes nothing in 
principle: One arrives at exactly the same result in either 
formulation. 

ˆl - Ax

ˆ x̂ε = l - A - Bŝ

x̂ ŝ

 

Let us now consider Vestøl’s case, in which we have a number of 
observations that are related to the land uplift. As described in the 
last section, the observations in this case are apparent uplifts at the 
mareographs, absolute uplifts at the GPS stations and height 
differences for the levelling lines between nodal benchmarks. Vestøl 
chooses to model the apparent land uplift by a “systematic” trend 
part, which is given by a polynomial of degree 5, to which a signal 
part is added, which is assumed to have the covariance function, 
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( )

( )

2 2
2

100 80.1 1   (mm/year)      if  d 60 km
400 400

0                                                                 if  d 60 km

ss

ss

C d d d

C d

⎛ ⎞= ⋅ − + ≤⎜ ⎟
⎝ ⎠

= >
    (2.10) 

where d is the distance in km. The corresponding correlation length 
is approximately 25 km and the signal standard deviation is 0.32 
mm/year. The reasons for choosing this trend surface together with 
the covariance function (2.10) will be further discussed below. It 
might be noted that the choice justifies the use of a homogeneous 
and isotropic covariance function, which would not be justified in 
case no trend surface was used. The vector of unknown parameters x  
thus consists of the coefficients of the polynomial and the heights of 
all involved levelling benchmarks (nodal points). In addition, two 

more parameters are introduced to relate the absolute uplift  
provided by GPS to the apparent counterpart  from the tide 

gauges; see Ekman and Mäkinen (1996a). The difference is modelled 
in the following way, 

h

aH

  ( )a e a eh H H s H H= + + ⋅ +  (2.11) 

where  is the eustatic sea level rise and  is a scale factor that is 

used to represent the uplift of the geoid. It is of course somewhat 
questionable whether the geoid rise can be modelled by a simple 
linear relationship, but this approximation can be expected to be 
reasonable; cf. Ekman (1998). More rigorous formulas can be found 
in Sjöberg (1989). In the present case, the two parameters  and  

are simply estimated together with the other unknowns in Eq. (2.3); 
see Vestøl (2005). It should further be mentioned that the 
construction of the design matrices A and B follows from the 
definition of the observations and the parameters. This is 
straightforward and need not be discussed here. 

eH s

eH s

An important question is how the observations should be weighted, 
which amounts to the construction of the matrix D in the above 
formulas. Vestøl assumes that observations are uncorrelated and 
then estimates variance components for 10 groups of observations. 
This means that the dispersion matrix is decomposed as 

2
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2
2

2
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0

σ
σ
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⎢ ⎥=
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where iP  is the diagonal weight matrix for observation group i. The 

variance components 2
iσ  are then estimated using the estimator 

derived by Förstner (1979a,b),  

   2 ˆˆi
ir

σ =
T
i i iε P ε    (2.13) 

which can be shown to be a Best Quadratic Unbiased Estimator 
(BQUE). Here îε  are the estimated residuals for group i and  are the 

corresponding local redundancies; see and Koch (1999) for further 
details. After the variance components have been estimated, they are 
introduced into Eq. (2.11) and the whole procedure is repeated until 
convergence (if it converges). It should also be mentioned that the 
estimation of variance components is combined with a test of 
outliers; see Vestøl (2005). The test statistic is the estimated outlier 
divided by its standard error. If this quantity is larger than 3, the 
observation is considered to be contaminated by a gross error. 

ir

Above most aspects of the method used by Vestøl (2005) has been 
summarised. Let us now consider one important part that has not 
been mentioned so far, and which was not understood at first by the 
present authors and which has caused a lot of confusion. As 
explained above, the land uplift is modelled by a trend surface 
(represented by a 5th degree polynomial), to which the estimated 
signal is added. One major problem here is that it is not possible to 
compute the trend outside the given observations. The polynomial 
very likely will start to behave violently when moving too far. To 
avoid this problem, Vestøl (2005) limits the use of least squares 
collocation with unknown parameters to the estimation of land uplift 
values at the observation points only. A completely different gridding 
algorithm is then used to produce the final grid. The grid values are 
computed from the estimated uplift at the observation points as the 
weighted mean (inverse distance weighting) of maximally four 
observations using a search algorithm. The closest observation in 
each of four quadrants is chosen in case it is situated within 120 km 
from the grid point. This means that in case only one observation is 
within 120 km, the grid value becomes equal to the “nearest 
neighbour”. A single observation therefore produces a cylinder with 
120 km radius. If no observation is within 120 km, the grid point is not 
defined. Thus, we repeat, the grid is not produced by adding the 
trend surface and the predicted signal from Eq. (2.5) in each grid 
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point. It is similarly a misunderstanding that the correlation length of 
Vestøl’s method is 120 km. The latter figure is only used in the search 
algorithm. As mentioned above, the correlation length of the 
covariance function (2.10) is equal to approximately 25 km. The 
above information has been confirmed by Vestøl (personal 
communication).  

As mentioned in Section 2.1, it is possible to estimate the land uplift 
from non-repeated levelling. It is important to notice that this 
requires that the levelling lines form loops or are connected in some 
kind of structure involving lines from different epochs. Otherwise, it 
is not possible to extract the land uplift. Let us elaborate a little on 
this point. Imagine four levelling lines forming a star according to 
Fig. 2.6, where one of the benchmarks is fixed to an arbitrary height. 
It is then obvious that we have four observations and the same 
number of parameters. Consequently, it is not possible to obtain any 
information concerning the uplift. No matter how large the uplift is, 
it is always compatible with the observations. What happens when 
the uplift field changes is simply that the heights adjust accordingly. 
Consider on the other hand the situation in Fig. 2.7, which contains 
one redundant observation. Here a change in the uplift field affects 
the observed lines, which means that the observations can be used to 
determine the uplift. The measurements are related to the uplift 
difference between benchmark 1 and 4. If all lines in the loop have 
been observed at different epochs, one equation is provided with 
three unknown uplift differences (e.g. two in the east-west and one 
in the north-south directions) and so on.  
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Figure 2.6: A levelling network that does not contain any information 
on the land uplift. 
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Figure 2.7: Illustration of a loop that contains information on the land 
uplift.  

Consider now the network in Fig. 2.8. Here the two loops provide two 
equations involving the uplift differences in the north-south and east-west 
directions. Since the uplift itself is also provided by a tide gauge in the fixed 
benchmark 1, the above structure may be used to estimate the uplift (not 
only differences) in case it is modelled by an inclined plane. It should be 
noticed that the network does not provide any redundancy. Notice further 
that the loose end to benchmark 8 does not add any information concerning 
the uplift, but since the uplift plane has been determined by the two loops 
and the tide gauge, it can be utilised to obtain the uplift for correction of the 
observations to the reference epoch. The situation is exactly parallel when 
the Norwegian levelling lines are used to determine the uplift. In this case, 
however, the land uplift is modelled by a fifth degree polynomial, to which 
a signal estimated by least squared collocation is added. The levelling lines 
forming loops in the inland parts of Norway helps to determine the uplift, 
but the many loose ends in the coastal regions do not contain any uplift 
information at all. In this case, the uplift field stems from tide gauges, GPS 
stations and levelling loops nearby. Naturally, this creates a rather 
unsatisfying situation at the “loose” or open lines, since the uplift is 
modelled by a fifth degree plus a signal. As was mentioned above, it is a 
well known behaviour of a higher degree polynomial that it starts to deviate 
violently outside the area with observations. As the open levelling lines do 
not constrain the uplift in any way (the uplift is only used there), it is 
questionable how good the resulting polynomial extrapolation is. It is true 
that the uplift field is also modelled by a signal part, but this does not help 
much. The covariance function must be chosen to be representative for the 
difference with respect to the constrained polynomial inside the observation 
area. In addition, the covariance is low when the loose ends (open lines) are 
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long, which means that the estimated signal can be expected to be small. 
When the outermost loose end point gets further than 60 km from its nearest 
neighbour, the covariance is identically zero for Vestøl’s function in Eq. 
(2.10), which means that the signal vanishes. This happens for several 
stations along the Norwegian coast. 
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Figure 2.8: Illustration of a network for which an inclined plane 
might be used to represent the uplift.  

2.2.2 The model in gridded form 
In this subsection some interesting numerical results from the 
computation of Vestøl’s model are first presented and discussed. 
Here only a few key issues are considered which are important for 
the choice of uplift model for RH 2000. The reader is referred to 
Vestøl (2005) for more details. After that, the final gridded model is 
presented and analysed. The subsection ends with a discussion of 
some of the shortcomings of the model. 

As mentioned in the last subsection, Vestøl estimates variance 
components using the technique presented by Förstner (1979a, b). 
Some information for the 10 observation groups are summarised in 
Table 2.2. As can be seen, the process has not been iterated until 
convergence. It is further somewhat uncertain how accurate the 
estimates of the variance components are. It would indeed be helpful 
with confidence intervals, but one drawback with the Förstner 
method is that no standard errors are obtained for the estimated 
components. Another question is how the estimation of variance 
components is related to the choice of trend surface and signal 
covariance function. How are the variance components affected by 
changes in the covariance function? Thus, it seems uncertain how the 
variance components in Table 2.2 should be interpreted. For instance, 
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should we say that the tide gauge uplifts are really as accurate as 0.1 
mm/year? Is the first Swedish levelling as good as indicated in Table 
2.2? The estimated standard error of unit weight in Table 2.1 is more 
than twice as large. On the other hand, the results in Table 2.2 
indicate that the weighting seems reasonable. The apriori standard 
errors looks approximately realistic, and the iteration in question 
indicates that nothing revolutionary happens in the estimation. 
However, too far-reaching conclusions regarding the accuracy of the 
different observation groups should be avoided. This means that it is 
wise to be a little sceptical concerning the accuracy of the resulting 
uplift model. Close to the tide gauges, the standard error of the 
estimated uplift will be close to 0.1 mm/year. These figures entirely 
depend on the apriori standard error assumed for the tide gauges. 
According to Ekman (1996), a value of 0.2 mm/year would be more 
justified. With what certainty can we say that 0.1 mm/year is true 
and 0.2 mm/year false?  

 

Table 2.2: Observation groups, apriori standard errors and variance 
components for the last iteration. From Vestøl (2005). 

# Description Apriori standard errors in iP  iσ  ˆiσ  

1 Norwegian levelling 1916-1972 1.34 mm/ km  1 0.993 

2 Norwegian levelling 1972-2003 1.12 mm/ km  1 0.994 

3 Finnish 1st levelling 1.07 mm/ km  1 1.006 

4 Finnish 2nd levelling 0.85 mm/ km  1 1.016 

5 Finnish 3rd levelling 0.80 mm/ km  1 0.983 

6 Swedish 1st levelling 2.04 mm/ km  1 1.000 

7 Swedish 2nd levelling 1.41 mm/ km  1 0.998 

8 Swedish 3rd levelling 1.10 mm/ km  1 1.005 

9 Permanent GPS stations 
1.51 times the standard errors 
estimated by Lidberg (2004); 
cf. the discussion in Sect. 2.1. 

1 0.992 

10 Tide gauges 0.10 mm/year 1 1.010 
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Let us turn now to the parameters for the difference between 
absolute and apparent uplift. The estimated parameters and standard 
errors obtained by Vestøl (2005) are the following: 

   (2.14) 
ˆ 1.32 0.14  mm/year

ŝ  6 2 %
eH = ±
= ±

The eustatic sea level rise agrees well with what have been obtained 
by others, for instance the estimate  mm/year of Lambeck 

et al. (1998); see further Ekman (2000). The scale factor is exactly the 
same as in Ekman and Mäkinen (1996a) for the centre of the uplift 
area, but Ekman (1998) uses the same scale factor for the whole of 
Fennoscandia. The corresponding apparent uplift values in the 
permanent GPS stations are presented in Fig. 2.9. 

1.05eH =
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Figure 2.9: Apparent land uplift values at the GPS-stations calculated using 
the linear model parameters estimated by Vestøl (2005). Unit: mm/year. 
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It is not the purpose of this report to present all practical details from 
Vestøl (2005). Let us comment, however, on two of the most notable 
gross errors that were detected and removed. The most important 
one for our concern can be seen by comparing Figs. 2.1 and 2.9. It is 
clear that the land uplift maximum is situated further to the north in 
the tide gauge case as compared to the GPS case. The apparent uplift 
from the mareograph in Furuögrund (8.75 mm/year) is 
approximately 1 mm/year larger than the same quantity in the 
permanent GPS station in Skellefteå (7.7 mm/year). As the latter is 
consistent with the three Swedish precise levellings, the tide gauge 
observation shows up as a clear outlier in the gross error detection. 
This means that Vestøl’s model has its centre to the south compared 
to the models that include Furuögrund, for instance Ekman (1996). 
This feature is obviously important for the computation of RH 2000 
and needs to be considered when the final uplift model is chosen. 
Another notable gross error is the mareograph in Oslo (4.1 
mm/year). We believe that this case is not as clear as the first, since 
the tide gauge and GPS observations now agree perfectly. According 
to Vestøl, however, these observations are contradicted by numerous 
levelling lines, which imply that the tide gauge observation is 
marked as an outlier. As the largest uplift differences in this case 
occur in Norway, the exclusion is perhaps not too crucial in Sweden. 
In any case, the two outliers should be kept in mind. It should finally 
be mentioned that no GPS observations are excluded as outliers, but 
43 levelling lines are rejected; see Vestøl (2005) for details. 

It is now time to take a look at the Vestøl (2005) model in its gridded 
form. It is here important to remember that Vestøl used least squares 
collocation with unknown parameters only to estimate the land 
uplift in the observation points. After that, an independent gridding 
algorithm is taken advantage of to produce the grid; see the 
discussion in the last subsection. The model is presented by a 
wireframe plot in Fig. 2.10 and by contour lines in Fig. 2.11. Notice 
that the model is undefined for all grid points further than 120 km 
from the closest observation point. It is clear from Fig. 2.10 that the 
model is rather rough, also in some of the more central parts. This 
feature can also be discerned by studying the contour lines in Fig. 
2.11, which are very curvy. It should be noted that the model is 
undefined for large areas, particularly at the south-east side of the 
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Baltic Sea. Furthermore, as was explained in Subsection 2.2.1, 
cylinders are formed around the isolated GPS observations to the 
south. This entirely depends on the interpolation method that was 
used in the gridding. The same effect can also be spotted at the 
borders of the model (along the coast of Norway and outside the 
Finnish-Russian border).  
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Figure 2.10: Apparent land uplift from Vestøl's grid model. Unit: mm/year. 
 

Let us now study how the model fits the given observations. For all 
uplift models that will be studied in this report, comparisons are 
made with the given tide gauge and GPS observations. It is much 
more difficult to summarise and visualise the residuals for the 
levelling lines/sections. As it is believed that GPS and tide gauges 
are most important, at least in Sweden, we feel content with 
presenting statistics and residuals only for the latter observation 
types. Now, the statistics for Vestøl’s grid model can be found in 
Table 2.3. The tide gauges are presented both with and without the 
two outliers discussed above, and the GPS statistics are considered 
for all 55 GPS stations provided by Lidberg (2004) as well as for only 
the SWEPOS stations. The reason for including the last case is that 
the SWEPOS stations have low standard errors and are important for 
the present purpose. They provide the most reliable information in 
the central parts of Sweden. 
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Figure 2.11: Contour lines for the apparent land uplift of Vestøl's grid 
model. Zero uplift is plotted where the model is undefined. Unit: mm/year. 
 
Table 2.3: Statistics for the apparent uplift residuals for Vestøl‘s grid model. 
The maximum for “All tide gauges” is given for both the outlier stations 
discussed in the text (Furuögrund/Oslo). Unit: mm/year. 
 

Observations # Min Max Mean StdDev RMS 

All tide gauges 58 -0.19 0.88/1.20 0.04 0.20 0.20 

Cleaned tide gauges 56 -0.19 0.18 0.00 0.08 0.08 

All GPS 55 -1.27 1.53 -0.02 0.45 0.45 

SWEPOS GPS 21 -0.56 0.31 -0.03 0.23 0.23 

 

It is clear that Vestøl model behaves as could be expected. It fits 
extraordinarily well to the tide gauges, which of course depends on 
the very high weight given to these observations; cf. Table 2.2. The fit 
to the SWEPOS stations is further good and the accuracy degrades 
when all GPS stations are considered, exactly as indicated by the 
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standard errors of Lidberg (2004). As discussed above, the two 
outliers differ considerably from the model, approximately 1 
mm/year in both cases.  

We now take a look at the estimated standard deviations for the 
estimated apparent land uplifts. As it is not easy in practice to 
propagate the standard errors through the independent gridding 
process, a nearest neighbour plot of the observation point standard 
errors is presented in Fig. 2.12. Very low values occur close to the 
tide gauges (cf. Fig. 2.1). This depends on the assumed apriori 
standard errors; see the discussion at the beginning of this 
subsection. It is difficult to judge whether the latter are realistic or 
not. It is more surprising, at least to the present authors, that 
comparatively low standard errors are also obtained for areas with 
only repeated levelling. The standard errors are between 0.12–0.2 
mm/year more or less in the whole of Finland, which obviously 
depends on the contribution from repeated precise levelling. In 
Sweden, the standard errors are typically between 0.2-0.3 mm/year. 
This shows that all the available information improves the standard 
errors significantly, compared to what could be expected in case only 
one single observation type is available; cf. the error propagation 
made at the end of Section 2.1. However, as was mentioned in this 
discussion, in case systematic or gross errors are present, the 
estimated standard errors are very likely to be too pessimistic. 
Another observation that can be made in Fig. 2.12 is that the quality 
of the permanent GPS stations is low at the southern parts of the area 
(continental Europe). It can finally be seen that the standard errors 
are high along the Norwegian coast, which mainly depends on the 
“loose ends” that were discussed at the end of Subsection 2.2.1. In 
these points, the uplift is extrapolated using a fifth degree 
polynomial, which is also reflected in large standard errors close to 
0.5 mm/year. 
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Figure 2.12: Nearest neighbour plot of the estimated standard errors for 
Vestøl's model in the observation points. Unit: mm/year. 
 

To sum up, Vestøl’s model agrees well with the given observations, 
which could be expected from the assumed standard errors. On the 
negative side, the basic problems are the following: 

• The model is not defined for the whole Baltic Levelling Ring 
network and needs to be extended. 

• The “cylinders” in the outskirts of the model are disturbing.  

• It is rough, particularly in Norway and Finland (see Fig. 2.10). 
Considering the high flexural rigidity of the crust, it is not 
likely that real postglacial land uplift behaves in this way. It is 
clear that it is difficult to choose the trend surface, the 
covariance function and the apriori standard errors in such a 
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way that the mathematical model becomes a realistic 
representation of the uplift field. There is no doubt that Vestøl 
(2005) has done a great work in synthesising all the given 
information, but it might be discussed if it would not be 
physically more realistic to represent the model in a smoother 
way. Of course, smoothing will not automatically give us the 
true uplift, but to the authors’ opinion, it will result in a more 
accurate land uplift model, due to the reduction of high-
frequency observation errors.  

 

The first problem is most crucial for the construction of a land uplift 
model for the computation of RH 2000. To be able to adjust the whole 
Baltic Levelling Ring network, Vestøl’s model obviously needs to be 
extended to a very large area. As Vestøl (2005) utilises a polynomial 
as trend surface, it is not possible for him to apply least squares 
collocation with unknown parameters for extrapolation. The 
polynomial would go crazy (so to speak). One suitable thing to do 
here is obviously to replace the use of a polynomial trend surface by 
a remove-compute-restore procedure with respect to a given model, 
for instance the geophysical model of Lambeck et al. (1998). This 
means that we would utilise least squares collocation to model the 
difference from Lambeck’s model. After the grid surface has been 
estimated by least squares collocation, Lambeck’s model is restored. 
This procedure has many advantages and certainly makes it possible 
to extrapolate the residual field without problems. However, as no 
time was available to realise this modification, we had no choice 
other than doing as good as possible with the models and 
observations at hand (at the end of 2004). Thus, several methods 
were tested to extend Vestøl’s gridded model to the whole Baltic Sea 
area. As the best geophysical model at the time was considered to be 
Lambeck’s model, it was chosen to supply the missing information. 
These investigations are presented in Section 3.1.  

The second problem in the above list shows that Vestøl’s 
independent gridding algorithm is not optimal for the task. It 
therefore seems suitable to replace it. As the model of Vestøl (2005) is 
available also in the observations points, it is possible for us to 
consider Vestøl’s model as defined in these points only, and neglect 
the Vestøl grid. Different methods for gridding and extension of 
Vestøl’s point model are consequently investigated in Section 3.2. It 
should be mentioned that, since Vestøl (2005) does not mention 
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anything about a separate gridding algorithm, the authors did not 
understand at first that such a method had been used. During this 
phase, the investigations presented in Section 3.1 were made. As 
soon as it was realised that the “cylinders” (or “bubbles” as Engsager 
calls them) were caused by the gridding, it seemed evident to start 
from the observation points. However, it is nevertheless believed 
that it is instructive to present the work made on Vestøl’s gridded 
model, which is the reason for including these investigations in 
Section 3.1.  

To sum up, a more extensive model is needed to extrapolate Vestøl’s 
model outside the original observations. As no other observations 
are available, it seems like the best option is to utilise the geophysical 
model of Lambeck et al. (1998). This model is investigated in the next 
section. 

2.3 Evaluation of Lambeck’s geophysical model 
As is revealed by the discussion of the third item above, a basic 
problem with a mathematical model is that it is uncertain how the 
data should be interpolated. In the case of a geophysical model, a 
physically meaningful interpolation method is supplied; at least as 
far as the model is realistic. It might therefore be better for us to use 
the geophysical model of Lambeck et al. (1998) by itself. As was 
discussed in the last section, this model is also considered as the best 
alternative for extrapolation of Vestøl’s model. In both ways, it is 
important to know the accuracy of the model. As explained in the 
introduction, Lambeck’s model has been tuned to the same tide 
gauge data as used by Vestøl (2005), which was taken from Ekman 
(1996); see Section 2.1 above. In addition, ancient shore line 
observations and other geophysical knowledge have been utilised in 
the construction of the model (Lambeck et al. 1998). It is the purpose 
of this section to evaluate Lambeck’s model using the tide gauge and 
GPS observations. 

In the introduction it was mentioned that that the geophysical model 
of Lambeck et al. (1998) was chosen for future work by the working 
group for height determination within the Nordic Geodetic 
Commission (NKG). Since Kurt Lambeck did not agree to make his 
1998 model available in digital form, the working group had no 
choice but to digitise the model from the paper publication of 
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Lambeck et al. (1998). This task was performed in parallel by the 
National Land Survey of Sweden (Lantmäteriet) and the Finnish 
Geodetic Institute (FGI). The two groups arrived at more or less the 
same result. The original figure from Lambeck et al. (1998) is shown 
in Fig. 2.13, while the digitised version is presented in Figs. 2.14 and 
2.15. Unfortunately, it was found that the digitised contour lines 
were not compatible with the given model values in the tide gauges, 
which were explicitly presented in Table 1 of the same publication. It 
thus seems that different versions of the model were presented in 
different parts of Lambeck et al. (1998). In what follows, Lambeck’s 
digitised model will be assumed as Lambeck’s model and no 
reference will be made to Table 1 in Lambeck et al. (1998). It is thus 
simply assumed that the digitised version constitutes the “real” 
Lambeck model. 

Another assumption concerns the uplift values outside the -1.0 mm 
/year curve in Fig. 2.13. It is here rather arbitrarily assumed that the 
minimum apparent uplift is -2.0 mm/year, which means that the 
splines used to convert the digitised contour lines to grid values are 
only extended until this value. If the eustatic sea level rise of 1.05 
mm/year is considered (Lambeck et al. 1998), this corresponds to a 
land sinking of 0.95 mm/year with respect to the geoid in the outer 
parts of the model. Of course, this situation is not realistic as far as 
the “real” land sinking dies out pretty soon further away from the 
uplift area. However, if it is considered that the model is only to be 
applied outside the -1.0 mm/year curve (apparent uplift) in the 
Netherlands, Germany and Poland, then it appears that the 
approximation is not so bad after all. In any case, it is not clear how 
to extend Lambeck’s model beyond the -1 mm/year curve in Fig. 
2.13. There is simply not enough information available.  
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Figure 2.13: Contour lines of the land uplift model published by 
Lambeck et al. (1998). Apparent uplift. Unit: mm/year. 
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Figure 2.14: Apparent land uplift from Lambeck’s model. Digitized version 
of Lambeck et al. (1998) with -2.0 mm/year as minimum value. Unit: 
mm/year.  
 



 

43 

10° 20° 30°

40°

50°
50°

55°
55°

60°
60°

65°
65°

70° 70°

0

0

2

2

4

4

66

8

10° 20° 30°

40°

50°
50°

55°
55°

60°
60°

65°
65°

70° 70°

−3

−2

−1

0

1

2

3

4

5

6

7

8

9
mm/year

 

Figure 2.15: Contour lines for the apparent uplift of Lambeck’s digitised 
model. Unit: mm/year.  
 

Let us now evaluate Lambeck’s model in the mareograph and GPS 
stations in exactly the same way as for Vestøl’s model in Subsection 
2.2.2. The corresponding statistics are presented in Table 2.4 and the 
residuals in question are plotted in Fig. 2.16. It can be seen that the 
model fits comparatively well to the tide gauges, even though some 
rather large deviations can be found; cf. also Lambeck et al. (1998). 
Again, the two most problematic areas in the tide gauge case are 
close to the land uplift maximum and in the Oslo region. The model 
is 0.7 mm/year too low in Furuögrund, but now significant outliers 
occur also on the Finnish side of the Gulf. Lambeck’s model fits 
almost perfectly in Oslo, but is on the other hand 1.5 mm/year too 
high in Nevlunghavn immediately south of Oslo. It also fits rather 
poorly with the mareograph in Smögen (on the Swedish coast south 
of Oslo). It is true that the original time series in Nevlunghavn only 
was 40 years (Ekman 1996), which might have caused a large 
residual, but the uplift should nevertheless be considerably more 
accurate than the large residual obtained. Thus, according to the 
mareograph observations, the uplift gradient is very strong in the 
Oslo Fiord. This feature seems difficult to model using both 
geophysical and mathematical models. The hand plotted model in 
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Ekman (1996) reproduces the Oslo observations much better. Except 
for the problems discussed above, the fit to the tide gauges is 
promising, which can be seen in case Fig 2.16 is carefully studied. 
However, the most important thing to notice in Fig. 2.16 is that 
Lambeck’s model disagrees with the inland GPS observations in 
Sweden. From Kiruna in the north to Jönköping in the south, 
Lambeck‘s model is systematically approximately 1.0–1.5 mm/year 
too high. This might be explained by that no GPS observations were 
utilised to tune Lambeck’s model, but it is nevertheless a little 
surprising that the model is so bad for the middle parts of the 
country. After all, ancient shore line observations were also taken 
advantage of by Lambeck et al. (1998). This deficiency makes 
Lambeck’s model ill-suited to be used as land uplift model in the 
final computation of the third precise levelling in Sweden, which 
covers almost the whole country; see Fig. 2.3.  

 
Table 2.4: Statistics for the apparent uplift residuals for Lambeck’s model. 
Unit: mm/year. 
 

Observations # Min Max Mean StdDev RMS 

All tide gauges 58 -1.50 1.03 -0.01 0.46 0.46 

Edited tide gauges 56 -1.50 1.03 -0.02 0.46 0.46 

All GPS 55 -1.64 1.46 -0.25 0.71 0.75 

SWEPOS GPS 21 -1.57 0.37 -0.49 0.54 0.73 

 

To sum up, Lambeck’s geophysical model is very smooth. The main 
problem is that it fits poorly with the GPS observations in the central 
parts of Sweden, which disqualifies it from being used as land uplift 
model for RH 2000. This shows that it is important that a geophysical 
model is tuned to all available geodetic observations, which is not yet the 
case with any of the available geophysical models. Thus, it is 
concluded that the best option in the present case is to start from the 
mathematical model of Vestøl (2005) and use Lambeck’s model only 
as a reference in a remove-compute-restore approach to interpolate 
and extrapolate Vestøl’s grid or point values. This is the main topic 
of the next chapter. 
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Figure 2.16: Difference between the GPS and tide gauge observations and 
Lambeck’s model.   
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3. Combination of the Lambeck and 
Vestøl models 
In the last chapter, it was concluded that the best option at the 
present time to construct a land uplift model for RH 2000 is to start 
from Vestøl’s mathematical model in the central parts of the area and 
take advantage of Lambeck’s geophysical model outside that. The 
latter might also favourably be used as a reference model for 
interpolation and extrapolation. However, it is far from certain how 
the two models should best be treated and combined. This is the 
main topic of the present chapter. It should be stressed that the 
severe time limitations for the finalisation of the RH 2000 project 
implied that it was not possible to construct new geophysical models 
or improved versions of Vestøl’s model. We simply had to do the 
best under the circumstances using the available information.  

In the last chapter it was explained how Vestøl (2005) uses least 
squares collocation with unknown parameters to estimate the land 
uplift in the observation points. A completely different method is 
then applied for gridding. Since some of the problems with Vestøl’s 
model are caused by the latter technique, for instance the staircase 
cylinders showing up at the borders, it would be logical to start from 
the uplift in the observation points. However, as it was not known at 
first that Vestøl (2005) had applied an independent gridding method 
a lot of work was made starting from the gridded model. This work 
is summarised in Section 3.1. To include these investigations has the 
advantage that the road followed by the authors is illustrated, which 
explains some of the features of the final result that otherwise would 
seem arbitrary. In the next section, it is investigated how Vestøl’s 
point model should be interpolated and extrapolated, using 
Lambeck’s model as reference in a remove-compute-restore 
approach. After a suitable interpolation method has been chosen, the 
chapter finishes with a section that investigates how the different 
interpolation techniques affect the closing errors around the Gulf of 
Bothnia and the Baltic Sea.  

3.1 Some extensions of Vestøl’s grid model 
It is the main purpose of this section to present some extensions of 
Vestøl’s grid using Lambeck’s model. Since the final model will be 
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derived starting from Vestøl’s point values, no comparisons are here 
made with the available observations. The different attempts are only 
presented using so called wireframe plots. It is believed that these 
plots highlight some important points concerning how Vestøl’s 
model should best be treated. 

The most straightforward and simple way to extend Vestøl’s grid is 
to take the uplift from Lambeck whenever Vestøl is undefined. This 
strategy results in the model illustrated in Fig. 3.1. Inside the 
definition area, it is exactly the same as in Figs. 2.10 and 2.11. It can 
be seen that Lambeck’s model agrees reasonably well on an average, 
but the cylinders are now more disturbing. The cylinders at the 
Norwegian and Finnish borders and in the central parts of Europe 
imply jumps on the 1-2 mm/year level, which looks bad (to say the 
least). It might be thought that it is possible to diminish the 
magnitude of the jumps by adjusting Lambeck’s model up or down, 
but this is only marginally so. The GPS observations in the central 
parts of Europe (south of latitude ) disagree too much internally. 
In addition, the jumps in Norway and in the southern parts of 
Finland are impossible to get rid of, since they depend on the 
presence of cylinders.  
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Figure 3.1: Vestøl's grid model extended with Lambeck’s model in the areas 
where the former is undefined. Unit: mm/year. 
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One problem with the model in Fig. 3.1 is that the jumps are terribly 
abrupt, which makes the model ill-suited for practical application. 
Imagine the Baltic Levelling Ring passing through the cylinder at 
latitude 52 and longitude 20 degrees. The 2 mm/year jump will 
cause errors both over longer distances and locally. To diminish the 
latter (high-frequency) errors, it seems favourable to make a gradual 
passage from Vestøl’s model to Lambeck’s. Such a model is 
presented in Fig. 3.2. It was derived under the assumption that 
Vestøl’s grid should not be changed inside its definition area. A 
smooth transition zone is then assumed to lead over to Lambeck. To 
accomplish this transition, the difference between Vestøl and 
Lambeck is interpolated using exact inverse distance interpolation as 
implemented in SURFER 8 (Golden Software 2002). The prediction 
points are chosen for the whole original grid, but the observation 
points are limited to the Vestøl definition area. After interpolation, 
Lambeck’s model is restored. Since the interpolation is exact, Vestøl’s 
original grid is reproduced exactly as required.  

In inverse distance interpolation, sometimes also known as 
Bjerhammar’s deterministic prediction method (see Bjerhammar 
1973), the value in the prediction (grid) point i is determined as a 
weighted mean of the given observations, using the weight ijp  for 

observation j,  

( )2 2

1
ij p

ij

p
d s

=
+

  (3.1) 

where  is the distance between the prediction point i and the 

observation point j, s is the so called smoothing parameter and p is 
the weighting power (or power parameter). In case the smoothing 
parameter s is set to zero, the interpolation is exact, which means that 
the observations are reproduced exactly. For non-zero s, the given 
observations are filtered and the interpolator is smoothing. If the 
prediction point i is further removed from the observations j, the 
extrapolation approaches the mean value of all observations. The 
speed of this transition depends on the power p. For low values, the 
mean value is approached faster. This can easily be seen by 
expanding the distance according to the binomial theorem, 
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where D is the distance to the centre of all observations and  is 

the residual distance. In case the linear term becomes so small that it 
may be neglected, an ordinary mean value is obtained, assuming for 
the moment that . When 

ijd∆

0s = p →∞ , on the other hand, the result 
approaches the nearest neighbour. All this means that for reasonably 
small powers, the extrapolation approaches the mean value of the 
difference between Vestøl and Lambeck far away, which is equal to -
0.19 mm/year in the present case. This implies that far away from 
Vestøl’s model, the new model approaches -2.19 mm/year instead of 
-2.00 mm/year. However, as the digitised version of Lambeck’s 
model is defined rather arbitrarily using the minimum value in 
question (cf. the discussion in Section 2.3), it seems justified to 
remove the mean value so that a new minimum is obtained. The 
authors further believe that it is in order to adjust Lambeck’s model 
up or down so that it fits all the available observations in the mean 
value sense. In the tuning of the model in Lambeck et al. (1998), the 
choice of the eustatic sea level rise using mareograph and other 
information accomplishes more or less the same thing. Thus, the 
remove-compute-restore interpolation is applied with respect to 
Lambeck’s model with the mean value difference from Vestøl 
removed, which means that a smooth transition is obtained to the 
mean value shifted version of Lambeck’s model. It should further be 
pointed out that the major reason for choosing inverse distance 
interpolation in the present case is that it provides a fast 
interpolation that makes it possible to utilise all observations for the 
interpolation of each grid point. Consequently, we are not forced to 
use some kind of search algorithm, in which a subset of the 
observations is picked out for each prediction. This is an advantage, 
since search algorithms tend to result in “staircase” behaviour in 
areas with only a few observations; cf. the cylinders in Vestøl’s 
model. 

 The question now is how the power parameter p should be chosen. 
This can be determined empirically so that a nice looking transition 
between Vestøl and Lambeck is obtained. After trying several values 
for p, it was decided graphically (by studying wireframe plots) that p 
= 3 is optimal. The resulting model is presented in Fig. 3.2. It is clear 
that the method works well and that a smooth passage is indeed 
obtained to Lambeck’s mean value shifted model.  
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Figure 3.2: Vestøl's grid model continued with the Lambeck model (mean 
value shifted). Smooth transition using inverse distance interpolation (power 
3 and no smoothing) of the difference between the two models. Unit: 
mm/year. 
 

A similar model was produced by Karsten Engsager at KMS in 
Denmark for use within the working group for height determination 
(Engsager 2004, email). In this case, however, least squares 
collocation was utilised to accomplish the transition. The software 
used by Engsager is the GRAVSOFT program GEOGRID written by 
René Forsberg (Forsberg 2003). In this program, a second order 
Markov covariance function is assumed with a certain correlation 
length. It is possible to weight each observation using apriori 
standard errors, which yields a diagonal covariance matrix D  in Eqs. 
(2.3) and (2.4). The variance  of the covariance function is then 

determined directly from the observations. Engsager applied 120 km 
correlation length with low apriori standard errors for Vestøl’s 
model (0.1 mm/year) and much higher for Lambeck (5.0 mm/year). 
One version of the model is presented in Fig. 3.3. Please notice that 
this model refers to a previous version of Vestøl’s model, which does 
not consider the uplift dependent part between absolute and 
apparent uplift in Eq. (2.11). Since the presentation of this extension, 
Engsager has continued to work on new models, but the deadline 
that RH 2000 should be released the 1st of February 2005 forced us to 
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focus on the problem at depth ourselves (as fast as possible). The 
second model of Engsager released in February 2005 is therefore not 
considered here. It seems to have been produced along similar lines 
with the only difference that the latest version of Vestøl’s model is 
used (the same one as is utilised in this report). 
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Figure 3.3: An earlier version of Vestøl's grid model extended by the 
Lambeck model using least squares collocation. The UV1 model (Engsager, 
email, 2004). Unit: mm/year. 
 

Now, if the last two models are studied carefully, it can be concluded 
that the smooth transition only improves the situation marginally. 
The cylinders introduced by the gridding are still present, and the 
inconsistency of the GPS observations in continental Europe and to 
the southeast of the Baltic Sea is as disturbing as before. No matter 
how one handles or extends Vestøl’s grid model, it is simply 
impossible to get rid of the discrepancies between the bad GPS 
observations. Studying the estimated standard errors in Fig. 2.12 for 
the GPS stations in question, it can be seen that they are 
comparatively high. It might be asked whether this information is 
really of any use at all at the present time. Is it not better to prefer the 
geophysical model for the areas in question, at least in case the latter 
agrees reasonably with the observations in some kind of mean sense? 
This is the opinion of the authors. It was thus decided to neglect all 
the grid nodes below latitude  for longitudes smaller than 19  
and below latitude  for larger longitudes. The dividing line is 

54° °
59°
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chosen so that it is situated outside the border of Sweden, so that the 
differences between Lambeck’s and Vestøl’s models are as small as 
possible along the line and so that the GPS-stations responsible for 
the cylinders are excluded. Of course, the most logical thing to do 
would be to recompute Vestøl’s model without the bad observations, 
but the time limitations mentioned above forced us to take both 
Vestøl’s and Lambeck’s models in the shape they were at the 
beginning of 2005. To obtain a simple solution, it was decided to use 
the dividing line described above, which is illustrated in Figs. 2.1, 2.2, 
2.5 and 2.9. Exactly the same inverse distance interpolation was 
applied as was used for the model presented in Fig. 3.2, but only 
observations above the dividing line were used. The resulting model 
is illustrated in Fig. 4. 
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Figure 3.4: Vestøl's grid model above the dividing line extended with the 
Lambeck model. Smooth transition using inverse distance interpolation 
(power 3 and no smoothing). Unit: mm/year. 
 

In this way, one gets rid of the largest cylinders to the south, but the 
plateaus are still present at the outskirts of the model. It is of course 
questionable how good the model is, and how well it agrees with the 
observations. In any case, the model in Fig. 3.4 looks more like real 
uplift than the ones in Figs. 3.1 to 3.3, but it might be argued that 
Vestøl’s model is still too rough in the central parts of the area; cf. the 
“zigzag” contour lines in Fig. 2.11. What can be seen in the above 
figures is not pure land uplift, but a combination of land uplift, other 
geodynamic phenomena of continuous or discontinuous (tectonic) 
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nature and observation errors. It is believed that it is mostly levelling 
errors that are responsible for the rough appearance.  

One way to get rid of most of the remaining cylinders, at the same 
time as the grid looks more realistic, is to use a smoothing 
interpolator. The grid could of course also be smoothed separately. 
This type of model was computed using inverse distance 
interpolation with power p = 3 and the smoothing parameter s = 0.5 
degrees. The values of the parameters were determined by trial and 
error so that a suitable model was obtained. This is discussed in more 
detail in the next section. The smoothed grid is presented in Fig. 3.5. 
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Figure 3.5: Vestøl's grid model above the dividing line extended with the 
Lambeck model. Smooth transition using inverse distance interpolation with 
power 3 and the smoothing parameter 0.5 degrees. Unit: mm/year. 
 

As can be seen, the land uplift pattern now looks much more 
realistic. One might ask, though, whether the smoothing parameter 
has been chosen in an optimal way. Another important question is 
whether we really get rid of the cylinders at the limits of Vestøl’s 
model. The last question is obviously important. At this point in our 
investigations it was discovered that Vestøl had applied an 
independent gridding algorithm, which explains some of the 
problematic features of the grid model like the cylinders. As was 
discussed at the end of subsection 2.2.1, it therefore seems like the 
best solution to go back to the adjusted point values, which is the 
topic of the next section. Another important question that has been 
posed by the above tests is how much the land uplift model should 
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be smoothed. The more the model is smoothed, the more it looks like 
a geophysical model. Due to the rather high flexural rigidity of the 
lithosphere, it is simply impossible for the model to take “any” 
shape. However, the more the surface is smoothed, the less exact 
becomes the interpolation, i.e. the more low-pass filtered the 
observations become. In the next section it will therefore also be 
investigated exactly how close the interpolated surface is to the 
original observations for different amounts of smoothing.  

3.2 Interpolation and extrapolation of Vestøl’s 
model as defined in the observation points  
At the end of the last section it was concluded that the best option is 
to go back to the original point values, which were obtained by least 
squares collocation with unknown parameters from all the available 
observations. Throughout the rest of this report, it will be assumed 
that only the point values above the dividing line are used. There is 
simply no way to reconcile the GPS observations in the central parts 
of Europe. Unfortunately this line was chosen so that also 5 tide 
gauges were removed, but at least one of them deviates quite a lot 
from the neighbouring observations; see Fig. 2.1. This unintended 
exclusion is unfortunate, but there was no time to correct the 
mistake. Fortunately, it makes very little difference for the resulting 
uplift model. The omitted tide gauge uplifts are reproduced 
sufficiently well by the different models anyhow (see e.g. Fig. 4.4 
below). 

The question now is how the land uplift values should be 
interpolated and extrapolated from Vestøl’s point values above the 
dividing line (743 observations). Many methods exist with different 
properties, and it is not apriori clear which one that is most suitable 
for the present case. In the last section, standard inverse distance 
weighting according to Eq. (3.1) was applied for interpolation 
(smoothing) and/or extrapolation. This technique is also referred to 
as Bjerhammar’s deterministic method (see Bjerhammar 1973). 
Another possible alternative is to use least squares collocation 
(Moritz 1980; Forsberg 2003) or Kriging (Cressie 1991). One 
complication in the present case is that we want to extrapolate the 
difference from Lambeck’s model (mean value shifted) in such a way 
that the difference goes to zero after a certain distance. This makes 
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several other interpolation methods unsuitable. For instance, 
minimum curvature methods produce a nice field in areas with 
observations, but the surface tends to behave arbitrarily where there 
is no information. Below, inverse distance interpolation will first be 
investigated, both with and without filtering of Vestøl’s point 
observations. After that, a few versions of least squares collocation 
(Kriging) are considered and what is believed to be the most suitable 
method is chosen. 

It should be mentioned that the same remove-compute-restore 
technique as above is applied. In the remove step, Lambeck’s 
geophysical model is subtracted from the 743 point observations, 
where it is assumed that the latter model has been shifted so that the 
mean of the differences betweens the Vestøl observations and the 
Lambeck model is zero. As the 743 observation points are irregularly 
distributed, the mean value deviates to the grid mean above. The 
point mean value is -0.684 mm/year. After the difference has been 
gridded using the interpolation method in question, Lambeck’s mean 
value shifted model is restored; cf. the discussion in the last section. 

3.2.1 Exact inverse distance interpolation 
The first method to be tested with point data is exact inverse distance 
interpolation. As discussed in the last section, this method 
approaches the mean value far away from the observation points. 
This makes it suitable in the present case, since this means that the 
final result will approach Lambeck exactly as required. The power 
parameter p was chosen to 3 after some experimenting with different 
values. The resulting model is illustrated by a wireframe plot in Fig. 
3.6 and by contour lines in Fig. 3.7.  
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Figure 3.6: Vestøl's point model above the dividing line extended with the 
Lambeck model. Exact inverse distance interpolation/extrapolation (power 
3, no smoothing). Unit: mm/year. 
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Figure 3.7: Contour lines for Vestøl's point model extended with the 
Lambeck model. Exact inverse distance interpolation/extrapolation (power 
3, no smoothing). Unit: mm/year. 
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The first thing that can be seen in the above figures is that 
interpolation from the observation points produces a much better 
looking grid compared to Vestøl’s original one in Figs. 2.10 and 2.11. 
The cylinders completely disappear and a gradual passage to the 
mean value shifted model of Lambeck is obtained. It is thus 
concluded that the uplift model should be interpolated from Vestøl’s 
point values. Another thing that can be observed in Fig. 3.6 is the 
typical bull’s eye patterns generated by exact inverse distance 
interpolation. It is a well-known feature of this type of interpolation 
that it produces small volcanoes around the observations in case they 
differ from the general trend of the surface (e.g. Golden software Inc. 
2002). Furthermore, by studying Figs. 3.6 and 3.7, it seems clear that 
the grid is a little too rough to be realistic and that some smoothing 
might be called for.  

However, before turning to the question of smoothing, let us take a 
closer look at how well the present model fits with Lambeck’s 
counterpart and the given observations. The difference from 
Lambeck’s model (not mean value shifted) is shown in Fig. 3.8. 
Notice that the remove-compute-restore method is applied with 
respect to the mean value reduced model, at the same time as the 
differences in Fig. 3.8 are presented with respect to Lambeck’s model 
as it is; see Section 2.3. The statistics of the residuals with respect to 
the tide gauge and GPS data are then presented in Table 3.1 

 

Table 3.1: Statistics for the apparent uplift residuals for Vestøl’s point 
model interpolated using the exact inverse distance method. The maximum 
for “All tide gauges” is given for both the outlier stations Furuögrund/Oslo. 
Unit: mm/year. 
 

Observations # Min Max Mean StdDev RMS 

All tide gauges 58 -0.57 0.87/1.20 0.03 0.21 0.21 

Edited tide gauges 56 -0.47 0.35 0.0 0.09 0.09 

All GPS 55 -1.25 2.07 0.12 0.61 0.62 

SWEPOS GPS 21 -0.48 0.33 -0.03 0.22 0.22 
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Figure 3.8: Contour lines for the difference between the exact inverse 
distance and the Lambeck models. Unit: mm/year. 
 

By studying Fig. 3.8 it can be seen that Lambeck’s model is 
significantly improved. The largest absolute improvement is 2.2 
mm/year and occurs in the southern parts of the Norwegian 
mountains. Furthermore, the difference is small along the Swedish 
coast, where there are many tide gauges, which is only what could be 
expected considering the way the model was constructed; see 
Chapter 1 and Section 2.3. For some reason Lambeck’s model 
deviates considerably at the mareographs on the Finnish side of the 
Gulf of Bothnia. Furthermore, the characteristic bull’s eye patterns 
can now be seen also in the contour lines. Notice for instance the 
deviating uplifts along the coast of Norway. Several of these occur in 
the open levelling lines discussed at the end of Subsection 2.2.1. The 
statistics in Table 3.1 contain no surprises, but the residuals are 
somewhat larger compared to Vestøl’s grid model in Table 2.3. This 
mainly depends on only point values above the dividing line being 
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utilised to interpolate the model in Table 3.1. On average, however, 
the statistics in Tables 2.3 and 3.1 agree well. 

To sum up, it is clear that we should start with Vestøl’s point values. 
It has further been found that exact inverse distance interpolation is 
not optimal for the task, mainly due to the bull’s eye patterns and to 
the rough appearance of the resulting grid. The former should 
obviously not be present in the final model, but the phenomenon is 
nevertheless helpful in spotting deviating observations. In the same 
way as above, it might be argued that it is suitable to smooth the 
model, but now this need not be motivated by the reduction of the 
disturbing cylinders. Instead, the physics of the Earth dictates that 
the land uplift cannot have any arbitrary shape. What lies behind the 
deviating observations are therefore mainly observation errors, most 
likely in the levelling lines. To reduce the influence of the errors, it is 
suitable to smooth the model. “When in doubt, smooth” (Moritz 
1980). 

3.2.2 Smoothing inverse distance interpolation 
The philosophy now is thus to produce a grid using a smoothing 
inverse distance interpolation, which means that the given 
observations will be filtered. The main question at this point is how 
to choose the smoothing parameter s in Eq. (3.1). The smoothing 
parameter s can be interpreted using the following fact. If smoothing 
inverse distance interpolation is used with a certain value for s, very 
similar results are obtained compared to first using exact inverse 
distance interpolation followed by applying a moving average filter 
that averages over a circle with radius s. This should be viewed as an 
empirical statement that has been corroborated by numerical tests of 
the authors. It is perhaps not valid for all powers p, but it is a good 
approximation for the powers in question here, i.e. p = 3. Thus, what 
can be expected from the smoothing inverse distance interpolation 
for different values of s might be visualised as the corresponding 
moving average (using the same radius s) of the result from exact 
inverse distance interpolation. Now, as there are no apriori reasons 
for preferring a certain value, s was chosen empirically using the 
following criteria, which are applied in the rest of this report to find 
the most suitable interpolation for RH 2000. The resulting model 
should  
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1.  “look” realistic, which implies that it should be reasonably 
smooth. It is true that the postglacial uplift might have a 
tectonic component, which occurs on a more local scale. 
However, from the analysis of very long GPS time series, it 
seems like tectonic movements are rare and/or small; cf. 
Johansson (2002) and Lidberg (2004). Even in case such a 
component is significant, it is unlikely that we will be able to 
model it satisfactorily. What we are doing here is simply to try 
to find a model for the continuous part of the uplift, which is 
bound to be smooth.  

2. fit reasonably with the observations. In our case, the GPS and 
tide gauge data are used to study this aspect. As was 
mentioned above, the residuals in the levelling observations 
are more difficult to summarise and visualise. The standard 
errors can be used to judge how much the model can be 
allowed to differ from the observations. It seems suitable to 
use the standard errors 0.2 mm/year for the tide gauges 
(Ekman 1996) and 0.3 mm/year for the SWEPOS stations 
(Lidberg 2004). In case all GPS observations are considered, it 
should be remembered that the bad point observations south 
of the dividing line have been discarded.  

3. behave well in areas without observations. This means that 
the model should not only be realistic for the whole Baltic 
Levelling Ring but also in other areas without observations, 
for instance in the Baltic Sea. Even though the main purpose 
of this work is to construct a land uplift model for RH 2000, it 
is always possible that the model is used in other areas for 
other applications in the future. This criterion is primarily 
intended to exclude interpolation methods that behave more 
or less arbitrarily outside the observations.  

The last item is obviously not problematic for inverse distance 
interpolation. As can be seen from the exact case above, the method 
performs well in areas without observations, both inside and outside 
(extrapolation) the observation area. Of course, the corresponding 
lack of information means that the uplift cannot be expected to be 
especially accurate, but the model does not start to behave violently 
or oscillate with large amounts. The value of the smoothing 
parameter s was thus chosen empirically balancing criterion 1 and 2 
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against each other. Otherwise exactly the same remove-compute-
restore technique as above was used and the power parameter p was 
chosen to 3. The best attempt, which was found for s = 0.5 degrees, is 
presented in Figs. 3.9 and 3.10. The difference from Lambeck is 
illustrated in Fig. 3.11. As can be seen, the resulting model is 
considerably smoother than the exact counterpart in Figs. 3.6 to 3.8. 
According to the authors it “looks” more realistic. It resembles 
Lambeck’s original model in Figs. 2.14 and 2.15, but it is important to 
notice that the smooth inverse distance model actually differs 
considerably from Lambeck. The difference, which can be found in 
Fig. 3.11, speaks for itself. However, that the model looks nice is of 
no use in case it does not fit with reality. The statistics for the 
comparison with the tide gauge and GPS observations are given in 
Table 3.2, which also contain statistics for the difference to Vestøl’s 
point values above the dividing line.  

 

Table 3.2: Statistics for the apparent uplift residuals for Vestøl’s point 
model interpolated using the smoothing inverse distance method. The 
maximum for “All tide gauges” is given for both the outlier stations 
Furuögrund/Oslo. Unit: mm/year. 
 

Observations # Min Max Mean StdDev RMS 

Vestøl’s point values 

above the dividing 
line 

743 -0.65 0.65 0.02 0.20 0.20 

All tide gauges 58 -0.36 0.93/1.24 0.18 0.25 0.31 

Edited tide gauges 56 -0.36 0.55 0.15 0.19 0.24 

All GPS 55 -1.15 2.07 0.18 0.61 0.64 

SWEPOS GPS 21 -0.59 0.49 0.03 0.32 0.32 
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Figure 3.9: Vestøl's point model above the dividing line extended with 
Lambeck. Smoothing inverse distance interpolation/extrapolation (power 3, 
0.5 degree smoothing parameter). Unit: mm/year. 
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Figure 3.10: Contour lines for Vestøl's point model extended with Lambeck. 
Smoothing inverse distance interpolation/extrapolation (power 3, 0.5 degree 
smoothing parameter). Unit: mm/year. 
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Figure 3.11: Contour lines for the difference between the smoothing inverse 
distance and Lambeck models. Unit: mm/year. 
 

Let us first consider the fit to the tide gauges. Disregarding the two 
outliers discussed in Subsection 2.2.2, the RMS of the edited residuals 
is 0.24 mm/year, which is perhaps a bit high, but nevertheless 
acceptable considering the standard error 0.2 mm/year in Ekman 
(1996). As is clear from our discussion of variance component 
estimation in Subsection 2.2.2, we are sceptical concerning Vestøl’s 
contention that the tide gauge standard errors are as low as 0.1 
mm/year for the whole region.  

Another observation that can be made in Table 3.2 is that the model 
seems biased at the tide gauges: The mean value 0.15 mm/year is 
significantly different from zero. This feature depends on another 
property of smoothing inverse distance interpolation. Remember that 
this type of interpolation yields similar results to first using the exact 
inverse distance method and then applying a moving average filter. 
It is a well-known feature of moving average filtering that it is biased 
by a positive amount in areas with a positive second derivative 
(convex upwards) and vice versa (Press et al. 1992, p. 645). Since it is 
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the difference between the exact inverse distance and the Lambeck 
models that is interpolated (see Fig. 3.8), it follows that the smoothed 
model will be too high in the “convex upward” parts in Norway and 
too low in the “convex downward” parts in Finland and Denmark. It 
is obvious that the moving average yields too high values in case the 
centre of curvature of the general trend is situated above the surface 
and vice versa. Now, as the majority of tide gauges are situated in 
the “convex downwards” areas (cf. Figs. 2.1 and 3.8), it follows that a 
systematically positive mean value can be expected. This is clearly a 
negative property of smoothing inverse distance interpolation, which 
needs to be considered when the final interpolation method is 
chosen. However, in the present case it is not certain that the bias is 
only negative. Since the largest deviations show up in the southern 
Norwegian mountains, where large differences from Lambeck’s 
model have been derived using exclusively non-repeated levelling, it 
might be good that the interpolation damps the uplift values 
somewhat. This question will not be further discussed at the present 
point. It will be touched upon again when the choice of final 
interpolation method is discussed in Section 3.2.4.  

It can further be seen in Table 3.2 that the agreement is acceptable for 
the SWEPOS stations and that the RMS value is approximately twice 
as high in case all the GPS stations are considered. It is concluded 
that the model agrees sufficiently well with the given observations, 
considering the standard errors in Section 2.1.  

Consider now the difference from Vestøl’s original model in Table 
3.2. The RMS value is 0.2 mm/year with the extremes as large as 0.65 
mm/year. This might seem too much, but it should be remembered 
that we actually want to smooth the data more than Vestøl (2005). 
This has been motivated several times above. The difference between 
using the exact and smoothing interpolation methods is illustrated in 
Fig. 3.12, in which Vestøl’s point values have also been marked. As 
can be seen, a considerable amount of high-frequency variations 
have been filtered out. Another feature in Fig. 3.12 is that the 
difference is slightly negative on an average in the southern 
Norwegian mountains and slightly positive in the western parts of 
Finland, which is what could be expected according to the above 
reasoning that the moving average is too high in “convex upwards” 
areas and vice versa.  
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Figure 3.12: Contour lines for the difference between the exact and 
smoothing inverse distance interpolation models. The dots denote Vestøl’s 
point values. Unit: mm/year. 
 

Now, it might be objected that too much information has been 
thrown away by the smoothing, or that the amount of smoothing is 
not suitable. Above, the method has been to choose the smoothing 
parameter as high as possible under the constraint that the resulting 
model should not deviate more in the RMS sense from the given 
observations than their standard errors. It is believed that this 
procedure is preferable since it will reduce the influence of levelling 
and other errors. It is of course difficult to say with certainty that we 
have chosen exactly the correct degree of smoothing or that we have 
not filtered away too much of the signal buried in the observations. 
In order to see how important this choice is for the final model, the 
sensitivity of the estimated heights on the degree of smoothing was 
investigated. It was thus tested how dependent the final heights are 
on the choice of s by computing the whole Baltic Levelling Ring with 
both the exact and smoothing inverse distance interpolation models. 
The difference between the two models is illustrated in Figs. 3.13 and 
3.14 for the whole area and Sweden, respectively. Some statistics can 
be found in Table 3.3. To visualise the difference between the 
adjusted levelling heights, Delaunay triangulation with linear 
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interpolation inside each triangle was used, which explains the 
values at sea in Fig. 3.13.  
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Figure 3.13: Adjusted height differences between using the exact and 
smoothing inverse distance interpolation models for the Baltic Levelling 
Ring. Delaunay triangulation with linear interpolation used for the 
visualisation. Unit: m. 
 

 

Table 3.3: Statistics for the difference in adjusted heights between using the 
exact and smoothing inverse distance uplift models  Unit: m. 

Observations # Min Max Mean StdDev RMS 

BLR 7401 -0.0287 0.0302 0.0006 0.0027 0.0027 

RH 2000 5088 -0.0048 0.0068 0.0010 0.0017 0.0020 
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Figure 3.14: Adjusted height differences between using the exact and 
smoothing inverse distance interpolation models for the RH 2000 network 
in Sweden. Delaunay triangulation with linear interpolation used for the 
visualisation. Unit: m. 
 

It can be seen that the dependence on the degree of smoothing is 
largest in the Norwegian areas with only non-repeated levelling. In 
addition, many old Norwegian lines are utilised in the height 
adjustment, which implies that the sensitivity in question is higher 
there. Fortunately, the situation is more promising otherwise. In 
Sweden, the third precise levelling started 1979 in the southern parts 
of the country and ended 1999 in the north (disregarding re-
levelling). Since the reference epoch in the height adjustment is 
2000.0, the land uplift corrections are comparatively small. However, 
the difference between exact and smoothing inverse distance 
interpolations is significant also in Sweden. Relative errors on the 5-
10 mm level are introduced over short distances in the southern half 
of the country. Consider for instance the “volcano” in Östergötland 
( and ). The only land uplift observations here are the 
second and third precise levellings, separated by approximately 30 
years, which yields the significant uplift difference illustrated in Fig. 
3.12. It seems likely that there is an undiscovered gross-error in the 
second levelling. Many other examples can be found of large local 
variations that can be attributed to levelling errors. Since the 
reliability for the third levelling is much higher than for the first and 
second counterparts, the gross errors are likely to be in the latter. 

58.3φ ≈ 15.1λ ≈
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Another thing that can be observed in Fig. 3.14 is that the systematic 
differences caused by the moving average properties of the 
smoothing inverse distance interpolation (see the discussion above) 
yield significant effects for the adjusted heights. In this case, 
however, the effect is of a long-wavelength nature, which makes it 
rather harmless; cf. for instance the blue-purple area in the north of 
Sweden.  

Thus, the use of an exact or a smoothing interpolation yields 
significant differences for the adjusted heights in the south of 
Sweden. The fact that the differences are lower in the north mainly 
depends on the corresponding lines being observed closer to the 
reference epoch 2000. To the authors, it seems best to trust the 
smoothing alternative. In the vast majority of cases, the difference 
between the exact and smoothing techniques can be blamed on land 
uplift errors caused by non-random behaviour of old levellings. If 
someone claims that we throw away important local information 
concerning the uplift field, for instance in Östergötland, then our 
stance is simply that we believe that it is more likely that the local 
effects are caused by undiscovered errors in the long, comparatively 
uncontrolled, lines of the first or second precise levellings. On the 
other hand, we still believe that levelling can provide useful 
information, which also motivates the present strategy; cf. the final 
discussion in Chapter 5. However, it is still questionable whether 
inverse distance interpolation is the most suitable method. In the 
next section a good alternative is investigated, namely least squares 
collocation or Kriging. 

3.2.3 Kriging and least squares collocation  
The main purpose of this subsection is to investigate least squares 
collocation and Kriging as alternatives to inverse distance 
interpolation. The two names refer to more or less the same thing, 
but are used in different contexts. The technique is denoted least 
squares collocation in Geodesy (e.g. Moritz 1980), while it is known 
as Kriging in Geostatistics (e.g. Cressie 1990). The main differences 
are that the terminology differs and that the covariance function in 
collocation is replaced by the (semi-) variogram in Kriging. The latter 
is defined as half the variance for the difference at two locations 
separated by the distance d.  



 

69 

 

Consider first least squares collocation, which was presented in a 
more general setting in Subsection 2.2.1. We now focus on the special 
case interpolation/extrapolation of a function in two-dimensional 
space. If it is assumed that the same remove-compute-restore 
technique as above is used, the prediction equation (2.5) may be 
written as 

      ( ) ( )( ) ( )1

,P̂ ll l
−

= + − − + + −
Pl l ll lamb lamb lambC C D l l l - l l lamb P  (3.3) 

where  is the land uplift observation vector,  contains the uplift 

from Lambeck’s model, 

l lambl

P̂l  is the predicted uplift in P,  is the 

signal covariance matrix for the spatially correlated land uplift 
differences in the observation points, D is the covariance matrix for 
random observation errors and  is a vector of covariances 

between P and the observations. Furthermore, (

llC

Pl l
C

)lambl - l  denotes a 

column vector with the mean of the differences from Lambeck in the 
observation points. Eq. (3.3) is the basic collocation equation that will 
be utilised to estimate land uplift from Vestøl’s point values above the 
dividing line. It can be shown that under the assumptions made (see 
Subsection 2.2.1), Eq. (3.3) is the Best Linear Unbiased Estimator 
(BLUE), i.e. the unbiased estimator with minimum variance (e.g. 
Moritz 1980). Notice further that it is assumed that the mean of the 

collocation argument ( ( )− − −lamb lambl l l l ) is zero.  

As mentioned above, the main difference between Kriging and least 
squares collocation is that the variogram is used to describe the 
statistical properties of the field to be interpolated/extrapolated. Let 
us now consider Kriging in more detail. It is first assumed that the 
land uplift is estimated as a linear combination of the available 
observations. Since it is not required in Kriging that the average of 
the observations (difference from Lambeck) is zero, the remove-
compute-restore technique may be simplified to 

( ),
1

ˆ
n

,P i i lamb i lamb p
i

l w l l l
=

= − +∑  (3.4) 

where the index i runs over all the n observations. It is assumed that 
the data contains no trend, i.e. { } 0P P dE l l +− = , where P dl +  is the land 

uplift at the distance d from P (in any direction). Furthermore, the 
covariance has to be homogeneous and isotropic. The Kriging 
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estimator is now derived so that it is the Best Linear Unbiased 
Estimator (BLUE). To be unbiased, it is elementary to show that the 
weighting coefficients must satisfy the condition 

1

1
n

i
i

w
=

=∑ .    (3.5) 

It is furthermore easy to show that the requirement of minimum 
variance is satisfied in case the following n equations are fulfilled 
(Cressie 1991): 

, ,
1

            for all 
n

i i j j P
i

w jγ φ γ
=

+ =∑  (3.6) 

where φ  is a Lagrangian multiplier, ,i jγ  is the variogram for the 

variation between the observations i and j while ,j Pγ  is the same 

quantity between observation j and the prediction point P.  

It can thus be seen that least squares collocation and Kriging can be 
derived using the same BLUE criterion. As stated above, the most 
basic difference is that the variogram is used instead of the 
covariance function. In addition, the only way to consider random 
errors in Kriging is to modify the variogram by the addition of a so-
called Nugget effect. Let us elaborate a little on this point. The 
variogram is defined as half the variance of the difference of two 
observations separated by the distance d. If it is assumed that the 
random errors of different observations are constant and 
uncorrelated, i.e. that the covariance matrix of the observations looks 
like 

2

2

2

0 0
0

0

l

l

l

σ
σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

D ,  (3.6) 

it follows from the usual definition of the variance and covariance 
that  

( ) ( ){ } ( )

( ){ }2 2
0

P P d

P l

E l l C d

E l C

µ µ

µ σ

+− − =

− = +
. (3.7) 
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where µ  is the expected value of Pl . It can now easily be seen that 

the variogram  is related to the spatially correlated covariance 

function  by  

( )dγ

( )C d

           
( )

( ){ }
( )

( )
( ){ }

2

2
0

2
0

         0
2

0                                 0
2

P P d

l

P P

E l l
d C C d

E l l
d d

γ σ

γ

+

+

−
d= = + − >

−
= = =

 (3.8) 

where  is the variance. Sometimes the variogram is defined 

so that the first row in Eq. (3.4) is applied also for d = 0, which means 
that 

( )0 0C C=

( ) 20 lγ σ= . This seems to be the case with Kriging as 

implemented in SURFER 8 (Golden Software Inc. 2002), which is the 
Kriging software used in this study, although it also has possibilities 
to apply the convention in Eq. (3.8). The variance 2

lσ  is usually 

referred to as the Nugget effect. Since the variogram is assumed 
homogeneous, it cannot take observations of different quality into 
account. This follows from all statistic properties in Kriging being 
specified by means of the variogram, while the covariance in 
collocation is used to describe only the spatially correlated field at 
the same time as the observation errors are modelled by the 
covariance matrix D. Another difference is that the methods behave 
differently far away from the observations, which is already 
indicated by Eqs. (3.3) and (3.4). If it is assumed that the covariance 
function approaches zero when the distance d increases, it follows 
from Eq. (3.3) that the collocation contribution to the solution 
vanishes. This will be the case also when the observations are biased 
with a mean value far from zero. In Kriging, on the other hand, 
condition (3.5) implies that the solution becomes a weighted mean of 
the observations. This means that the Kriging part of the solution in 
Eq. (3.4) approaches the mean far away, at least to the extent that 
numerical effects are disregarded (see below). This difference 
between collocation and Kriging is important in the present study as 
we are interested in extrapolation of the land uplift difference with 
respect to Lambeck’s model far from the observations.  

The application of collocation thus requires that the covariance 
function and the observation noise covariance matrix D are specified, 
while a variogram is needed in the Kriging case. Usually, analytical 
functions are used to construct the covariance or the variogram, 
where the defining parameters are obtained empirically by analysing 
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the given observations. Concerning the observation noise, collocation 
allows the specification of individual apriori standard errors. If 
correlations between different observations are known, they can 
easily be incorporated into D. As mentioned above, Kriging in its 
present form is limited to the specification of one Nugget effect, 
common to all observations, even though this variogram might be 
constructed from several different components.  

Let us now consider interpolation and extrapolation from Vestøl’s 
point values. It should be remembered that the latter are the result of 
an application of the more general least squares collocation method 
described in Subsection 2.2.1. This means that the point values were 
estimated assuming the covariance function in Eq. (2.9), which 
describes the residual field after removal of a fifth degree trend 
polynomial. The uplifts consequently have a certain variability, 
which depends on the choice of both apriori standard errors and the 
covariance function. As has been discussed several times above, it is 
believed that Vestøl’s choice yields a field that is a little too rough. 
This means that it might be preferable to choose a longer correlation 
length than 25 km, which was originally used by Vestøl (2005). It 
must further be considered that Vestøl’s covariance function (2.10) 
refers to the difference from a polynomial trend function, while the 
deviation from Lambeck is interpolated in the present case. This 
implies that a direct correspondence cannot be expected between the 
two covariance functions. It seems like the best choice in the present 
case is to derive the variogram or covariance function from an 
empirical analysis of the available point value residuals above the 
dividing lines, which constitute 743 point value observations 
(differences from Lambeck). In order not to delve into too much 
detail, only the results from these exercises are presented here (see 
below). Concerning the specification of apriori standard errors for 
the observation noise, it should be noticed that the estimated 
standard errors are also available for Vestøl’s point values; cf. 
Subsection 2.2.1 and Fig. 2.12. Thus, if least squares collocation is 
used, the estimated standard errors may preferably be applied to 
construct the noise matrix D. In Kriging we are forced to apply a 
common Nugget effect, which could be constructed using the 
variance 0.2 mm/year, or perhaps a bit higher.   
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Below the results using Kriging as implemented in SURFER 8 
(Golden Software Inc. 2002) are first presented. After that, least 
squares collocation is tested using the GRAVSOFT program 
GEOGRID (Forsberg 2003). It is assumed that the remove-compute-
restore techniques in either Eq. (3.3) or Eq. (3.4) is utilised. It might 
be thought that it is a good alternative to construct an exact Kriging 
interpolator by neglecting the Nugget effect. However, this might 
easily yield extremely bad results in areas without observations 
when the observations contain more high-frequency power 
compared to what is implied by the variogram. This is clearly 
illustrated by the following test, in which a Gaussian variogram 
without Nugget is assumed,  

( ) { }( )21 exph C hγ = − − .  (3.9) 

This variogram is formulated in terms of the normalised distance h, 
which is computed approximately as 

 
2 2 2 2

2 2 2
cos

4
h

A A A

2

2A
φ λ φ λ φ⋅∆ ∆ ∆ ∆

≈ + ≈ +

2

 (3.10) 

with the parameters C = 0.4  (scale), A = 1.5 degrees 

(range) and 

2mm /year

φ  is the mean latitude of the area. As can be seen from 
the last part of Eq. (3.10), the mean latitude is taken as 60 degrees in 
the present project. The corresponding covariance function has the 
approximate correlation length 170 km. The correlation length is here 
defined as the length for which the covariance is half the variance 
(Moritz 1980). The above parameters are obtained by empirical 
analysis of the Vestøl’s point value differences from Lambeck’s 
model. It should also be mentioned that all observations are utilised 
for the prediction of each grid point, which means that no quadrant 
search algorithm is used to speed up the computations. Now, the 
resulting solution is referred to as the exact Kriging (SURFER 8) 
model. Its difference from Lambeck is presented in Fig. 3.15. 
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Figure 3.15: Contour lines for the difference between the exact Kriging and 
Lambeck models. Unit: mm/year. 
 

The model fits perfectly with the observations (above the dividing 
line), but has the inconvenient feature that it starts to grow violently 
in unobserved areas. Notice that the unit is mm/year! It should be 
mentioned that this effect occurs also on more local scales. Thus, in 
case Kriging or collocation be used, it is more or less mandatory to 
choose a smoothing interpolator that considers the standard errors in 
the observations. It should be pointed out that this behaviour also 
depends on the shape of the variogram. It is, for instance, larger for a 
Gaussian variogram compared to a linear one. That the solution 
might behave in this way in exact Kriging is well worth to keep in 
mind. A similar behaviour is likely to show up also in case too small 
apriori standard errors are specified for the observations, but of 
course in a less exaggerated form.  

Thus, we are more or less forced to choose a smoothing Kriging 
interpolation, i.e. Kriging with a Nugget effect. The solution using 
the same Gaussian variogram as above with a Nugget effect specified 
by the standard deviation lσ  = 0.2 mm/year is shown in Fig. 3.16. As 

mentioned above, it is not possible to use different apriori standard 
errors in the present version of Kriging. The resulting solution is 
called the smoothing Kriging (SURFER 8) model below.   
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Figure 3.16: Contour lines for the difference between the smoothing Kriging 
and Lambeck models. Unit: mm/year. 
 

It can be seen that the result looks much better. No clear oscillations 
can be discerned and the figure reminds of the smoothing inverse 
distance counterpart in Fig. 3.11. However, notice the “hills” outside 
the Norwegian coast, but more of this later (see below). It should 
further be noticed that the model do not exactly approach the mean 
value shifted Lambeck far away from the observations. It gives -2.32 
mm/year instead of -2.68 mm/year. It seems like numerical effects 
are responsible. One could otherwise expect that since no spatial 
correlation occurs far from the observations, the predicted value 
should be exactly equal to the mean; cf. the discussion above. 
However, this problem is of little practical significance. As will be 
seen in Section 3.3, we nevertheless have to specify the minimum 
value of the resulting model to a larger value than both -2.68 
mm/year and -2.32 mm/year to obtain a realistic value in 
Amsterdam (NAP), which is important in the present project. As the 
solution behaves well close to the observations, the difference far 
away is therefore considered unproblematic. 
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The least squares collocation solution is made using the GEOGRID 
software (Forsberg 2003). Vestøl’s estimated standard errors are 
applied to construct the diagonal of the matrix D and it is assumed 
that the observations are uncorrelated. To speed up the 
computations, the GEOGRID search algorithm (see Forsberg 2003) is 
taken advantage of using 25 observations per quadrant. It is of 
course also possible to tune the FORTRAN parameter statements so 
that all observations are utilised, but due to the severe time 
limitations concerning the finalisation of RH 2000 the default settings 
are preferred here. GEOGRID utilises a second order Markov process 
covariance function, defined as 

( ) 0 1 exp
d

C d C
d

α α
⎧ ⎫⎛ ⎞

= + −⎨ ⎬⎜ ⎟
⎩ ⎭⎝ ⎠

 (3.11) 

where α  is a parameter related to the correlation length as 

1/ 20.595 dα ≈ ⋅ . The variance  is automatically estimated from the 

data. The correlation length is chosen to 165 km.  This is practically 
equal to the value implied by Eq. (3.9) and (3.10). Notice also that the 
remove-compute-restore estimator in Eq. (3.3) is applied, which 
implies that the mean value is first removed and later restored. The 
GEOGRID solution will be referred to as the smoothing collocation 
(GEOGRID) model below. The difference from Lambeck (without 
mean value shift) is illustrated in Fig. 3.17.  

0C
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Figure 3.17: Contour lines for the difference between the smoothing 
collocation and Lambeck models. Unit: mm/year. 
 

If Figs. 3.16 and 3.17 are compared, it is clear that the smoothing 
Kriging and smoothing collocation solutions are very similar, 
especially in areas with observations. The most notable difference 
can be discerned outside the coast of Norway, where the oscillations 
are considerably smaller in the collocation case compared to the 
Kriging solution above. This depends on the outermost uplift 
observations in question being often of questionable quality, due to 
the fact that open levelling lines are used and/or only limited land 
uplift information being available; cf. the discussion at the end of 
Subsection 2.2.1. These deficiencies are naturally reflected in the 
estimated standard errors; see Fig. 2.12. As the “hills” outside the 
Norwegian coast in Fig. 3.16 all occur outside point observations 
with high standard errors, it is not strange that the least squares 
collocation solution yields smaller oscillations. Another difference 
between the two models is that the collocation solution approaches 
mean value shifted Lambeck far from the observations, exactly as 
predicted above, while this is only approximately fulfilled for the 
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Kriging solution. It can also be seen in Fig. 3.17 that the GEOGRID 
search algorithm results in some zigzag behaviour of the contour 
lines, but this effect is so small that it can be neglected in the present 
context. The search algorithm works well and 25 observations per 
quadrant are obviously sufficient for the purpose. 

However, neglecting the small differences discussed above, the main 
conclusion is that the two models are similar. Due to this fact, it 
seems sufficient to analyse only one of them in detail. Rather 
arbitrarily, the smoothing Kriging model is therefore chosen. The 
model is illustrated in Figs. 3.18 and 3.19. 
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Figure 3.18: Vestøl's point model above the dividing line extended with 
Lambeck. Smoothing Kriging interpolation/extrapolation. Unit: mm/year. 
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Figure 3.19: Contour lines for Vestøl's point model extended with Lambeck. 
Smoothing Kriging interpolation/extrapolation. Unit: mm/year. 
 

It can be seen in the above figures that the smoothing Kriging model 
is smooth and “looks” as realistic as the smoothing inverse distance 
counterpart above. Before the difference between inverse distance 
interpolation and Kriging/collocation is considered, let us study how 
well the Kriging model fits with the observations and Vestøl’s point 
values. The corresponding statistics is presented in Table 3.4. 

The smoothing Kriging model fits equally well to the GPS and tide 
gauge observations as the smoothing inverse distance counterpart, 
but is considerably closer in the observation points. The RMS value 
reduces from 0.20 mm/year in the inverse distance case (Table 3.2) to 
0.11 mm/year for Kriging.  Considering the smooth character of the 
solution and that it reproduces Vestøl’s point values so well, makes 
Kriging (or least squares collocation) a strong candidate for the final 
solution.  
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Table 3.4: Statistics for the apparent uplift residuals for Vestøl’s point 
model interpolated using the smoothing Kriging method. The maximum for 
“All tide gauges” is given for both the outlier stations Furuögrund/Oslo. 
Unit: mm/year. 

Observations # Min Max Mean StdDev RMS 

Vestøl’s point values 

above the dividing line 
743 -0.51 0.43 0.00 0.11 0.11 

All tide gauges 58 -0.60 0.78/1.33 0.03 0.27 0.27 

Edited tide gauges 56 -0.60 0.38 -0.01 0.18 0.18 

All GPS 55 -1.31 1.79 0.09 0.59 0.59 

SWEPOS GPS  21 -0.64 0.44 -0.05 0.30 0.30 

 

However, it is not certain that we want to have the best possible fit to 
all observations. One unfortunate property of the present Kriging 
solution is that it might not have been filtered sufficiently at the 
borders of “observation areas”. In such cases, no information is 
available on one side (so to speak) and the estimate becomes more 
dependent on the outermost observation. In such cases, the 
interpolated surface is also likely to deviate systematically outside 
the border in question; cf. the hills outside the Norwegian coast in 
Fig. 3.16. Of course, the phenomenon is reduced when least squares 
collocation with individual apriori standard errors is utilised, but it 
occurs also in this case. In this respect, the present inverse distance 
method provides a more effective filtering. Let us consider a portion 
of the Norwegian coast as an example, in which some land uplift 
observations of bad quality are present; cf. Figure 2.12. The deviation 
between the point values (observations) and the smoothing inverse 
distance as well as the smoothing Kriging observations are presented 
in Fig. 3.20. It can be seen in Fig. 3.12 that the differences from 
Lambeck deviate in some of the outermost points compared to the 
general trend in the area. This depends on the land uplift being not 
well determined in these points. Actually, the uplifts in the point 
close to the left corner and in the two most northern points have been 
extrapolated using a fifth degree polynomial; cf. the discussion at the 
end of Subsection 2.2.1. What happens with the Kriging solution in 
this case is that the model fits too well, while the smoothing inverse 
distance interpolation filters the observations more appropriately. 
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The same type of example can be constructed also in Sweden, for 
instance along the coasts of the Baltic Sea. It is thus concluded that 
the filtering properties along the “observation borders” are better for 
the present smoothing inverse distance solution compared to the 
Kriging counterpart. 
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Figure 3.20 Difference of the Vestøl’s point observations from the 
smoothing inverse distance (upper value) and smoothing Kriging 
(lower value) models. Unit: mm/year.  

3.2.4 Choice of interpolation method 
At the end of the last section it was concluded that the filtering 
properties of inverse distance interpolation (with the chosen 
parameters) are arguably better close to borders, but as discussed in 
Subsection 3.2.2, this type of interpolation also has its disadvantages. 
The question now is which method that should be chosen for the 
final model. In the same way as in the last subsection, it will be 
approached by first studying how much the corresponding models 
differ. It is then investigated how dependent the adjusted heights of 
the Baltic Levelling Ring are on the choice.  

The differences between the smoothing Kriging and smoothing 
inverse distance models are illustrated in Fig. 3.21. The most notable 
thing in Fig. 3.21 is that it is of a comparatively long-wavelength 
nature. The effect discussed in the last subsection, that the inverse 
distance model is too high in the “convex upward” areas with a 
positive second derivative (southern Norway) and vice versa 
(western Finland), can be clearly discerned. Otherwise, the largest 
differences between the models occur outside the coast of Norway 
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and in the Baltic. It is interesting to note that several of the “hills” 
outside the coast of Norway occur outside low quality observations; 
cf. Fig. 2.12. Even though these effects are reduced by the least 
squares collocation solution, which uses the estimated standard 
errors for the weighting, they are significant also in this case. It is 
therefore believed that the smoothing inverse distance interpolation 
is a little more robust in the areas without observations.  
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Figure 3.21: Contour lines for the difference between the smoothing Kriging 
and smoothing inverse distance interpolation models. The dots denote 
Vestøl’s point values above the dividing line. Unit: mm/year. 
 

Another thing that can be seen in Fig. 3.21 is that the two models 
agree well in Sweden. The differences are typically 0.1 – 0.2 
mm/year. In addition, they are of a long-wavelength nature. 
Considering the standard errors of the uplift in Sweden in Fig. 2.12, it 
is clear that differences between the methods are significantly 
smaller than the standard errors of the observations. Let us now turn 
to how dependent the adjusted heights are on the differences in 
question. The difference between using the smoothing Kriging and 
smoothing inverse distance models in the adjustment of the Baltic 
Levelling Ring is illustrated in Figs. 3.22 and 3.23 for the whole area 
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and Sweden, respectively. The corresponding statistics can be found 
in Table 3.5. 
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Figure 3.22: Adjusted height differences between using the smoothing 
Kriging and smoothing inverse distance interpolation models for the Baltic 
Levelling Ring. Delaunay triangulation with linear interpolation used for the 
visualisation. Unit: m. 
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Figure 3.23: Adjusted height differences between using the smoothing 
Kriging and smoothing inverse distance interpolation models for RH 2000 
in Sweden. Delaunay triangulation with linear interpolation used for the 
visualisation. Unit: m. 
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Table 3.5: Statistics for the difference in adjusted heights between using the 
smoothing Kriging and smoothing inverse distance uplift models. Unit: m. 
 

Observations # Min Max Mean StdDev RMS 

BLR 7401 -0.0196 0.0182 -0.0016 0.0021 0.0026 

RH 2000 5088 -0.0050 0.0011 -0.0016 0.0012 0.0020 

 

It should be noticed that the difference in mean value depends on the 
two interpolation methods yielding somewhat different results for 
the NAP in Amsterdam, but as this value has to be modified 
anyhow, this should not bother us here; see the next section. The 
most interesting thing in Fig. 3.22 is that the choice of model is most 
important in Norway, exactly as in Subsection 3.2.2, which again 
depends on the many old levelling lines. Notice the systematic 
difference in the mountains in the southern parts of the country, 
which depends on the bias of the smoothing inverse distance 
method. Another observation is that the levelled heights differ in the 
most northern parts, which depends on the different filtering 
properties of the two interpolators. As can be seen in Fig. 3.20, a 
number of the outermost observations are filtered differently. As 
some of the involved levelling lines are old, differences up to two 
centimetres are generated in the most northern levelling benchmarks.  

In Sweden, the difference between the methods is only a few 
millimetres and of long-wavelength nature, which is reassuring. The 
maximum height difference (highest minus lowest) is 6.1 mm within 
the whole country and the standard deviation is 1.2 mm. By 
comparing the above results with Subsections 3.2.1 and 3.2.2, in 
which the exact and smoothing inverse distance methods were 
studied, it may be concluded that it is more crucial whether an exact 
(Vestøl’s original) or a smoothing interpolation is used. It is 
consequently not too important which smoothing alternative that is 
chosen. As we nevertheless have to choose one 
interpolation/extrapolation technique, the smoothing inverse distance 
method is preferred. The main reason for this choice is that it is 
considered as having somewhat better filtering properties at the 
“observation borders”. As Vestøl’s model relies on the land uplift 
from the second and third precise levelling for large regions (see 
Section 2.1), it is believed that it is important to use a method that 
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filters the point values effectively, also at the “borders” of the 
observations (for instance in the central parts of northern Sweden). 
Of course, we have to pay the price that the land uplift model is 
slightly biased, but this effect is hardly significant in Sweden, where 
it is only a few millimetres. It is more important in southern Norway, 
but in this area of non-repeated levelling the quality of the uplift is 
questionable anyhow. It might even be argued that the bias in 
question is positive in such areas, since it might damp the magnitude 
of large systematic errors somewhat; cf. the discussion in the last 
section. Another less important argument for using the inverse 
distance method is that it seems a little more robust in areas without 
observations, for instance in the Baltic and Norwegian Seas. It is true 
that this is not important for the adjustment of the Baltic Levelling 
Ring, but the resulting uplift model might be used also in other areas 
in the future.  

It is admitted that the Kriging (collocation) solution is more suitable 
in other respects: It has for instance the advantage (or disadvantage) 
that it fits better with all of Vestøl’s point observations at the same 
time as it is as smooth as the inverse distance counterpart. However, 
it should be pointed out that a large number of other interpolation 
methods exist and that it is more or less impossible to judge which 
one that is most optimal in the particular case. Furthermore, both the 
inverse distance and Kriging (collocation) methods have been tuned 
in different ways, which is also arbitrary to some extent. Thus, it will 
always be uncertain whether we have chosen exactly the correct 
method and parameters. In the present case, it is the authors’ belief 
that we have reached a point where the two smoothing strategies 
both can be considered as sufficiently good. Based on the reasons 
mentioned in the last paragraph, the smoothing inverse distance 
method is therefore chosen as interpolation and extrapolation 
method for the adjustment of the third Swedish precise levelling.  

3.3 Closing errors around the Gulf of Bothnia 
and the Baltic Sea 
Let us finish this chapter by presenting two inconclusive evaluations 
of the above interpolation methods, which were made by studying 
the closing errors around the Gulf of Bothnia and the whole Baltic 
Sea. The main purpose is to show how dependent the closing errors 
are on the choice of interpolation method and to investigate whether 
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everything is in order with the adjustment. Due to the propagation of 
random levelling errors, and due to possible errors in the 
connections across the Gulf of Finland and the Åland Sea, it is 
difficult to say with certainty that one interpolation method is better 
than the other. It is consequently not the aim to use the results as an 
arbiter in the choice of interpolation method.   

It should first be emphasised that only levelling observations are 
used in all the adjustments of the Baltic Levelling Ring that are 
presented in this report. This means that no connection is utilised 
between Sweden and Finland across the Åland Sea and that Finland 
is not directly tied to the network in Estonia. However, by taking 
advantage of other information than levelling, it becomes possible to 
compute the closing errors. The closing error around the Gulf of 
Bothnia can be computed using the oceanographic estimate in 
Ekman and Mäkinen (1996b) of the mean sea level difference at tide 
gauges on opposite sides of the Åland Sea. In a similar way, the 
closing error around the whole Baltic Sea can be found using the 
connection across the Gulf of Finland established by Jürgenssen and 
Saaranen (personal communication). The latter is based on a 
combination of GPS, the NKG 2002 geoid model (Forsberg and 
Strykowsky, personal communication) and levelling to several tide 
gauges. Of course, the accuracy of these connections is somewhat 
questionable, which is one reason for not including this information 
in the Baltic Levelling Ring adjustments. Now, the closing errors for 
the exact inverse distance, smoothing inverse distance and 
smoothing Kriging uplift models are presented in Table 3.6. 

 

Table 3.6: Closing errors for different land uplift models using alternative 
connections across the Åland Sea and the Gulf of Finland. Unit: m. 
 

Land uplift model Åland Sea Gulf of Finland 

Exact inverse distance 
(original Vestøl) 

0.0038 0.0148 

Smoothing inverse 
distance 

0.0183 0.0110 

Smoothing Kriging 0.0202 0.0070 
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If it is considered that the levelling extends over thousands of 
kilometres, and that the levelling lines between Finland and Åland 
include optical water crossings, the closing errors in Table 3.6 are 
incredibly small. This shows that everything is in order with the 
adjustment. However, as stated above, it is not possible to judge 
which interpolation method that performs best. It might for instance 
be noted that for the connection across the Åland Sea, the exact 
inverse distance differ considerably from the other two methods, 
which is in agreement with the previous conclusions. However, this 
result is contradicted by the closing errors across the Gulf of Finland. 
Considering the many uncertainties, nothing should thus be 
concluded in this respect. To sum up, the most important 
conclusions that can be reached from Table 3.6 are that the 
differences between the interpolation techniques are small (1 cm 
level) for the very long distances in question and that everything 
seems to be fine with the adjustment of the Baltic Levelling Ring.  
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4. The choice of final uplift model and its 
consequences 
As discussed in the introduction in Chapter 1, the system definition 
for RH 2000 includes five major components, namely the land uplift 
model, reference epoch, zero level, type of heights and system for the 
permanent tide. Since RH 2000 is defined to be a Swedish realisation 
of EVRS (European Vertical Reference System) as defined in 2005, 
only the first two remained to be chosen on a national level. The 
reference epoch for the land uplift corrections should preferably be 
chosen to the mean of all observations, but due to more political 
aspects of the problem, it was nevertheless specified to 2000.0. 
Consequently, the remaining and most important part is the 
construction of a suitable land uplift model. However, this does not 
mean that all other components of the definition can be totally 
neglected. The construction of a land uplift model is related to the 
specification of zero level through the fact that the Normaal 
Amsterdams Peil (NAP) is affected by the uplift; it sinks with respect 
to the geoid. One important question at this point is whether this 
effect should affect the zero level or not. To answer this question, it is 
important to carefully outline and discuss the 2005 definition of 
EVRS. This is one purpose of Section 4.1.  

In the last chapter it was investigated how Vestöl’s and Lambeck’s 
land uplift models should best be combined. It was mentioned 
several times that the situation is not completely satisfactory at the 
outskirts of the model, for instance in the vicinity of the NAP. 
Another purpose of Section 4.1 is to modify the model so that it 
becomes more realistic in its non-central parts. After that, the final 
land uplift model is presented and analysed (Section 4.2). It is 
compared how well the model fits to the available observations and 
how much the final RH 2000 heights differ from the heights that 
would have been obtained in case Lambeck’s model would have 
been applied without modification.  

The last two sections deals with the consequences of the system 
definition, which is regarded as including the land uplift model. In 
Section 4.3 the main topic is to investigate how the resulting RH 2000 
heights relate to the old Swedish height system RH 70, to the 
European Vertical Reference Frame EVRF 2000 and to the new 
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Danish height system DVR 90 (Schmidt 2000). The other Nordic 
countries (Finland and Norway) have not yet finalised their new 
height systems/frames. Section 4.4 finally deals with the question 
where the Mean Sea Level (MSL) is located in RH 2000 at four 
mareographs along the Swedish coast.  

4.1 Definition of RH 2000 and the land uplift in 
Amsterdam (NAP) 
In the last chapter it was decided to use the smoothing inverse 
distance method to interpolate and extrapolate Vestøl’s point values. 
As discussed in Section 3.1, the inverse distance method approaches 
the mean value far away from the observations. If the remove-
compute-restore technique is applied with respect to Lambeck’s 
model, it follows that the extrapolated model approaches the mean 
value shifted Lambeck (-2.68 mm/year) at large distances from the 
uplift area. One problem here is that the apparent uplift for the 
Normaal Amsterdams Peil (NAP) arguably becomes too low, namely 
-2.54 mm/year. Using Vestøl’s estimated value of the eustatic sea 
level rise (-1.32 mm/year), the corresponding land sinking is 1.22 
mm/year with respect to the geoid. Admittedly, this figure is in the 
right neighbourhood, but considering both the literature and the 
available observations, the sinking is a bit too large. For instance, the 
apparent uplift in the NAP is -2.0 mm/year according to the model 
of Milne et al. (2001); see also Mäkinen (2004). Moreover, the two 
GPS stations in the vicinity of Amsterdam give the mean value -1.9 
mm/year apparent uplift (see Fig. 2.9).  

In Section 2.3 it was mentioned that Lambeck’s (digitised) uplift 
model was extended in such a way that the minimum apparent uplift 
becomes exactly -2.00 mm/year; see Fig. 2.14. Of course this method 
implies that the resulting model cannot be perfect in its outermost 
parts. It is well known that the uplift (in relation to the geoid) first 
becomes slightly negative and then smoothly approaches zero far 
away from the uplift centre. Considering the estimated eustatic sea 
level rise, it follows that Lambeck’s model should approach -1.32 
mm/year after a certain (unknown) distance. However, if it is 
assumed that the model is used no further than NAP and that the 
uplift is realistic thus far, then the model is nevertheless good for the 
present purpose in case the minimum value is representative. One 
drawback is the discontinuity of the first derivative when the model 
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reaches the bottom (so to speak), but considering the many other 
uncertainties involved, this effect seems like a minor problem. Now, 
the strategy used to extend Lambeck’s model will be adopted also for 
the RH 2000 model and the main question is how the minimum 
value should be chosen. This might seem like a straightforward 
enough matter, but as it is intimately related to the system (datum) 
definition of RH 2000, it is important to investigate how the 
specification of the NAP uplift affects the final heights for RH 2000. 
These questions are investigated in this section.  

The 2005 definition of the European Vertical Reference System 
(EVRS) and the definition of RH 2000 were briefly discussed in the 
introduction (Chapter 1). Let us now consider this topic in more 
detail. Concerning the European systems we try to follow the 
standard IERS terminology that differentiates between reference 
systems and frames: the former is the definition, while the latter 
refers to the realisation. However, as no such distinction exists in 
Sweden, we prefer to use the Swedish convention and talk about the 
Swedish “reference system” RH 2000. The term “reference system” 
refers to both the definition and its realisation. What is meant should 
be clear from the context. Now, RH 2000 is defined to be the Swedish 
realisation of the European Vertical Reference System (EVRS) in 
2005, which is defined in the following way (quoted from the EUREF 
home page in 2005; see also Ihde and Augath 2001 and Mäkinen 
2004): 

• “The vertical datum is the zero level for which the Earth 
gravity field potential  is equal to the normal potential of 

the Mean Earth Ellipsoid :  
0W

0U

 

0W U= .  (3.12) 

• The height components are the differences PW∆  between the 

potential PW  of the Earth gravity field through the considered 

points P and the potential of the EVRS zero level . The 

potential difference 
0W

PW−∆  is also designated as geopotential 

number Pc : 

0P PW W W c−∆ = − = P   (3.13) 

Normal heights are equivalent to geopotential numbers. 
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• The EVRS is a zero tidal system, in agreement with the IAG 
resolutions.”  

Notice the quotation marks. Admittedly, this sounds like a definition 
of a World Height System (WHS). What is specifically European, 
however, is the way EVRS is realised. The latest realisation of EVRS 
(in 2005), which is called the European Vertical Reference Frame 
EVRF 2000, is characterised by the geopotential numbers and normal 
heights for the nodal benchmarks of the United European Levelling 
Network 95/98 (UELN 95/98) in relation to the Normaal 
Amsterdams Peil (NAP). The realisation is made according to the 
following conventions (again the point list is inside quotation 
marks): 

• “The vertical datum of the EVRS is realized by the zero level 
through the Normaal Amsterdams Peil (NAP). Following this, 
the geopotential number in the NAP is zero:  

0NAPC = . 

• For related parameters and constants of the Geodetic 
Reference System 1980 (GRS 80) is used. Following this, the 
Earth gravity field potential through NAP  is set to be the 

normal potential of the GRS 80 
NAPW

                          . 80
0

realisation GRS
NAPW U=

• The EVRF 2000 datum is fixed by the geopotential number 
and the equivalent normal height of the reference point of the 
UELN No. 000A2530/13600.” 

Thus, the EVRS is realised through the zero level in NAP, which 
refers to the sea level (mean high tide) in 1684. This is obviously 
problematic in many respects; see Mäkinen (2004) for a longer 
discussion. It seems best to view the height of the NAP reference 
point as a convention, which is valid independently of time. It is 
irrelevant where the sea surface was back in 1684. It should further 
be noticed that no motion is specified for NAP, even though it is 
clear that the sea level rises with approximately 2 mm/year in 
Amsterdam (more than the eustatic sea level rise); see Mäkinen 
(2004) and the above discussion of apparent uplift at the NAP. There 
is also evidence that the reference point is locally unstable (Mäkinen 
ibid.). This means that different realisations will not refer to the same 
equipotential surface. Instead they are determined relative to the 
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physical reference point 000A2530/13600. Thus, since the NAP is 
(very likely) moving, different realisations “realise” EVRS 
differently. This might be the reason for including the specification of 
the NAP zero level in the realisation (or frame) part of the 
description above, which is otherwise somewhat strange, since it 
seems like a crucial part of the system definition. Of course, the EVRS 
definitions in 2005 might be interpreted as saying that any system 
satisfying the very general system requirements above constitutes a 
realisation, but since this implies that almost any gravity related 
vertical system/frame qualifies as a realisation, we view EVRS as 
implicitly defined using the NAP zero level. We prefer to finish this 
rather philosophical discussion at this point. The question how the 
EVRS/EVRF should best be defined in the future is discussed at 
length in Mäkinen (2004). For the time being (2005) we simply have 
no choice but to define RH 2000 in analogue to EVRF 2000 using the 
NAP reference. This is in accordance with how other “NAP” 
countries like Germany and the Netherlands have realised their 
height systems.  

The EVRS is specified to use a zero system for the permanent tide 
(e.g. Ekman 1989). It should be noticed, though, that the conventional 
zero level in NAP was used independently of permanent tide 
systems for many years. Only recently, after the question was 
brought to focus by Ekman (1989) and others, the EVRS was 
specified to be a zero system. To our knowledge, no correction was 
applied to convert the original NAP level to such a system. This 
means that the same NAP value has been used to fix height systems 
that treat the permanent tide differently. For instance, the Swedish 
height system RH 70 utilises a non-tidal permanent tide system, but 
has been realised using the same NAP value as cited above.  

To sum up, the EVRS (in 2005) is realised by keeping the NAP (the 
reference benchmark 000A2530/13600) fixed, but since this reference 
is moving, realisations made at different times deviate from each 
other, also in case all relative motions are modelled properly. This 
means that if one frame is to be converted to another with different 
epoch, it is sufficient to reduce the levelling observations (relative 
height differences) to the new epoch. No correction should be 
applied to the NAP height. Furthermore, the EVRS of today is a zero 
permanent tide system, but previous versions were unspecified in 
this respect. When the same NAP value has been used to fix two 
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height reference systems/frames with different treatments of the 
permanent tide, no correction should be applied to the NAP height 
when transforming between the corresponding tide systems. It is 
sufficient to transform the height differences relative to the NAP. 

As stated in the introduction, the new Swedish reference system 
RH 2000 is defined to be a realisation of EVRS. This implies that a 
zero permanent tide system and normal heights are to be used. 
According to the above discussion, it also implies (for the time being, 
i.e. 2005) that the zero level is fixed by means of the NAP. Even 
though this reference is not stable, the NAP should nevertheless be 
treated as if it did not move at all. The potential number of the 
reference point No. 000A2530/13600 cited above is consequently 
fixed in the adjustment of the Baltic Levelling Ring. The internal 
vertical movement caused by the Fennoscandian land uplift, on the 
other hand, is reduced to the reference epoch 2000.0 using the model 
of this report. This epoch is not given as part of the EVRS definition, 
but was chosen for its “political correctness”; see Chapter 1. 

Since the land uplift model is only used to correct levelling lines, 
which involve the uplift at two different stations, only the uplift 
difference with respect to the NAP is really used. As a consequence, 
the adjusted heights in Sweden move up and down depending on 
how the NAP uplift is chosen in our model, but it is not known how 
dependent the adjusted heights are on this choice. As mentioned 
above, the smoothing inverse distance model estimated from Vestøl’s 
point values (illustrated in Figs. 3.9 to 3.11) is to be modified so that a 
suitable uplift value is obtained in NAP. The method is the same as 
was applied for Lambeck’s model in Section 2.3, namely to redefine 
the minimum value to a suitable value. To see how sensitive the 
estimated heights are, the height differences between using the 
model illustrated in Fig. 4.1 with the minimum value -2.00 mm/year 
and the original smoothing inverse distance model with the 
minimum value -2.68 mm/year are presented in Fig. 4.2. The 
corresponding apparent uplift values in the NAP are -2.54 and -2.00 
mm/year, respectively. 
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Figure 4.1: Apparent uplift for the smoothed inverse distance model with 
minimum value -2.00 mm/year. Unit: mm/year. 
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Figure 4.2: Adjusted height differences between using a smoothed inverse 
distance model with minimum values -2.68 and -2.00 mm/year. Unit: m. 
 

It can be seen from Fig. 4.2 that the adjusted heights in the Nordic 
countries reduce by approximately 13 mm when the apparent uplift 
in the NAP changes from -2.54 mm/year to -2.00 mm/year. The 
effect is systematic (on the 1 mm level) and may be viewed as 
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inducing a systematic shift over Sweden. It is thus concluded that the 
resulting heights are not too dependent on the NAP uplift. Since it 
will be impossible to specify the “true” uplift in the NAP, we can 
expect an error in the form of a systematic shift on the 1 cm level. As 
we nevertheless have to choose something, the minimum value is 
taken as -2.00 mm/year, which agrees with the model in 
Milne et al. (2001) and the GPS observations in the Netherlands; see 
Fig. 2.9. Considering the eustatic sea level rise, this means that the 
land sinking in Amsterdam is 0.68 mm/year with respect to the 
geoid, which is reasonable. The smoothing inverse distance model 
with the minimum -2.00 mm/year is taken as the final land uplift 
model for RH 2000. It is further investigated in the next section. 

4.2 The RH 2000 land uplift model: 
NKG2005LU  
In what follows the land uplift model used for the computation of 
RH 2000 will be referred to as NKG2005LU. (Earlier this model was 
called RH 2000 LU; see the note in Sect. 1.5). In this section 
NKG2005LU is first presented. It is then investigated how well it fits 
with the observations. It is finally tested how much the adjusted 
heights of the Baltic Levelling Ring differ depending on whether the 
model of Lambeck et al. (1998) or NKG2005LU is applied to model 
the land uplift.  

The contour lines for the final model NKG2005LU can be found in 
Fig. 4.3. The residuals for the GPS and tide gauge observations are 
presented in Fig. 4.4 and the usual statistics is given in Table 4.1. A 
black and white version of Fig. 4.3 can be found in Chapter 5. 
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Figure 4.3: Contour lines for the apparent uplift from the RH 2000 land 
uplift model NKG2005LU (Smoothed inverse distance model with 
minimum value -2.00 mm/year). Unit: mm/year. 

 

Table 4.1: Statistics for the residuals of NKG2005LU (smoothed inverse 
distance model with minimum -2.00 mm/year). The maximum for “All tide 
gauges” is given for both the outlier stations Furuögrund/Oslo. Unit: 
mm/year.  
 

Observations # Min Max Mean StdDev RMS 

All tide gauges 58 -0.36 0.93/1.24 0.18 0.26 0.31 

Edited tide gauges 56 -0.36 0.55 0.14 0.19 0.23 

All GPS 55 -1.15 1.46 0.13 0.52 0.53 

SWEPOS GPS 21 -0.59 0.49 0.03 0.32 0.32 

 

It can be seen that NKG2005LU fits well with the observations. For 
both the mareograph and GPS observations, the RMS values are in 
agreement with the standard errors (see Section 2.1), at the same time 
as the model is smooth; cf. Fig. 4.1. Another thing that can be noticed 
is that the residuals of the SWEPOS stations in the central parts of 
Sweden are much lower compared to the same errors for Lambeck’s 
model; cf. Section 2.3. Otherwise, most features of the final model 
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have already been discussed, for instance the exclusion of the 
mareographs in Furuögrund and Oslo; see Subsection 2.2.2. The most 
important aspect to consider here is the behaviour of NKG2005LU in 
the Netherlands, Germany and Poland, which is affected by the 
choice of minimum value (-2.0 mm/year), which was discussed in 
the last section. As can be seen, the model agrees reasonably with the 
GPS observations as far out as to the Netherlands and middle 
Germany and middle Poland. South of that, it is clear that 
NKG2005LU gives too small uplift values, exactly as expected 
considering the way the model was constructed. The four 
southernmost residuals are 1.5, 0.7, 1.3 and 1.4 mm/year; see Fig. 4.4. 
However, since NKG2005LU is not meant to be applied in this area, 
this is not considered problematic in the present context; cf. the 
discussion in Section 3.3.  

10°
20°

30°

50° 50°

55° 55°

60° 60°

65° 65°

70° 70°

1 mm/year

(Outlier)

(Outlier)

 

Figure 4.4: Mareograph and GPS residuals for NKG2005LU 
(smoothed inverse distance model with minimum value -2.00 
mm/year). Unit: mm/year.  
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It was mentioned in the introduction that it was at one time seriously 
considered within the NKG to utilise Lambeck’s model in 
unmodified shape. From the Swedish point of view, the main 
problem with this would have been the poor fit to the GPS 
observations in the central parts of the country; see Fig. 2.16. Up to 
now, we have followed a long road to reach the final uplift model, 
which is believed to be a good combination of Vestöl’s and 
Lambeck’s models. An important question at this point is how much 
the adjusted heights are affected by the difference between 
NKG2005LU and the model of Lambeck, i.e. how much we have 
gained by our efforts to improve Lambeck’s model. The land uplift 
difference itself was illustrated in Fig. 3.11 for the central parts of the 
area. Due to the modification of the minimum value of the 
smoothing inverse distance model (leading to NKG2005LU), the 
difference at the outskirts of the area now vanish. The adjusted 
height differences between using the two models are presented in 
Fig. 4.5.  
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Figure 4.5: Adjusted height differences between using the land uplift model 
of Lambeck et al. (1998) and the NKG2005LU model. Delaunay 
triangulation used for the visualisation. Unit: m. 
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By studying Fig. 4.5, it can be seen that the differences are on the cm 
level and of a comparatively long wavelength nature. As in all 
similar comparisons in Chapter 3, the largest discrepancies occur in 
Norway. In Sweden, they reach approximately 2 cm at the 
Norwegian border. The main effect in Sweden is otherwise a slope in 
the east-west direction, but the “shape” of the adjusted heights is also 
significantly affected. Another observation is that the two models 
yield very similar heights along the Swedish coast, which is only 
what could be expected considering the previous results; cf. Section 
2.3. It is thus concluded that the present modifications of Lambeck’s 
model yield significant height improvements over central Sweden. 
Along the coast, on the other hand, the differences are more or less 
negligible. 

4.3 Comparison of RH 2000 with other height 
systems 
With all components of the system definition being fixed, it is now 
possible to make the final adjustment of the Baltic Levelling Ring. It 
is not the purpose of the present document to describe the 
computation of geopotential numbers, gross error detection, 
adjustment, etc., in detail. Let us just mention a few basic facts 
concerning the RH 2000 adjustment.  

All levelling data from the whole Baltic Levelling Ring was included 
in the adjustment. It should be stressed that only levelling 
observations were utilised. In the first step, the levelled height 
differences were converted to geopotential differences by 
multiplication with gravity (Heiskanen and Moritz 1967). A least 
squares adjustment was then made of the geopotential differences 
between a total of 7 400 nodal points, of which 5132 are Swedish. The 
national data sets in the Baltic Levelling Ring were given the weights 
determined by Karsten Engsager on behalf of NKG. The Swedish 
aposteriori standard error of unit weight became approximately 1 
mm/√km. The estimated standard errors with respect to the NAP are 
approximately 2 cm in Sweden. The uncertainty due to the poor land 
uplift knowledge around Amsterdam (discussed in Sect. 4.1) is thus 
within the estimated standard errors, which is reassuring. In case the 
standard errors are transformed so that they refer to a fixed station in 



 

100 

Sweden, for instance Gävle, they become smaller than 1 cm for the 
whole country, increasing approximately as the square root of the 
distance. The relative standard errors inside Sweden are thus below 1 
cm, which is important in practice. 

The results from this adjustment constitute the new Swedish height 
system RH 2000. In this section we take a look at how well the final 
product compare with three other height systems, the old Swedish 
one, EVRF 2000 and the modern Danish height system. The goal is 
both to investigate the properties of the new height system and to 
learn something about the final land uplift model NKG2005LU. The 
comparison with the old Swedish system RH 70 is interesting since it 
might provide us with a clue concerning the magnitude of the 
levelling errors that did not go into the land uplift model. As has 
been discussed many times above, we believe it crucial to use a 
smoothing uplift model that filters a comparatively large portion of 
the observation errors, which is the main reason for that a smoothed 
land uplift model having been chosen. The comparison with 
EVRF 2000 is included mainly as an illustration of the differences 
over Sweden, caused by the significantly different land uplift epochs; 
cf. Section 1.2. 

We start with the old Swedish height system RH 70, which is the 
system (frame) that resulted from the second precise levelling in 
Sweden; see for instance Ekman (1998). As stated in the last section, 
RH 2000 is defined as a realisation of EVRS, which implies that the 
NAP reference level has been used to fix the datum, and that it uses a 
zero system for the permanent tide. It should further be remembered 
that the land uplift epoch is 2000.0. The old system RH 70, on the 
other hand, utilises a non-tidal treatment of the permanent tide and 
has the uplift epoch 1970.0 (see Ekman 1998). What is common 
between the two systems is that RH 70 is defined using the same 
NAP zero level and that normal heights are utilised in both cases. To 
be fair, we should thus take care of the following two effects when 
RH 70 and RH 2000 are compared: 

• the land uplift between 1970.0 and 2000.0 and  

• the difference in permanent tide system (non-tidal and zero). 

However, before these corrections are considered, let us take a look 
at how the heights of the two systems differ as they are. The height 
differences are illustrated in Fig. 4.6 and the corresponding statistics 
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is given in Table 4.2. The most notable thing is that the land uplift 
dominates totally, but it is possible to discern also other effects of 
more short-wavelength nature; see for instance the “mountain” in 
Karlstad ( ).  59.5 , 13.5φ λ° °= =
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Figure 4.6: Difference between RH 2000 computed with NKG2005LU 
(smoothed inverse distance model with minimum -2.00 mm/year) 
and RH70. Unit: m. 

 

Table 4.2: Statistics for the difference between RH 2000 computed with 
NKG2005LU (smoothed inverse distance model with minimum -2.00 
mm/year) and RH 70. Unit: m.  
 

Corrections # Min Max Mean StdDev RMS 
No corr. 4751 0.072 0.311 0.191 0.060 0.207 

Land uplift and 
permanent tide 

4751 -0.155 0.048 -0.035 0.031 0.047 
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Let us now compare the two systems with corrections applied for the 
treatment of the permanent tide and the land uplift. The former is 
straightforward and is given by for instance Ekman (1989),  

      ( ) ( )2 20.296 1 sin sin       [m]zero non tidal NAPH H γ φ φ−∆ − ∆ = ⋅ − −   (4.1) 

where  and  denote height differences with respect to 

the NAP (i.e. ) and 
zeroH∆ non tidalH −∆

NAPH H H∆ = − 0.8γ =  for RH 70 (Ekman ibid.). It 

should be noticed that only the height differences with respect to 
NAP should be corrected. As discussed above in Section 3.3, this can 
be motivated by the same NAP value having been applied during the 
years, independently of permanent tide system.  

The land uplift correction is more complicated due to the way RH 70 
was connected to NAP. We first point out that no correction should 
be applied to NAP and that only the height differences with respect 
to the NAP should be corrected. This follows from NAP being fixed 
in the European systems/frames; see Section 3.3 for details. To be 
able to see how the land uplift correction should be applied, it is 
important to explain how the connection to NAP was accomplished 
for RH 70, and the way the land uplift was treated. The adjustment 
was made with the height of a benchmark in Helsingborg as fixed. 
The approximate epoch of this benchmark is 1950.0 (Ekman 1994). 
All levelled height differences, as well as the Helsingborg 
benchmark, were reduced to the epoch 1970.0 using a land uplift 
model. The latter was constructed from the first and second Swedish 
precise levellings and 11 mareographs (Ekman 1998). Since no 
difference was considered between the apparent and levelled land 
uplifts (i.e. the eustatic sea level rise was neglected), a land uplift 
value very close to zero was applied for the Helsingborg benchmark. 
The value 0.06 mm/year was derived, which gives ≈1.2 mm height 
correction in Helsingborg. Practically, this means that the uplift 
between NAP and Helsingborg was not corrected between 1950.0 
and 1970.0. From the above reasoning, it can be deduced that the 
following corrections should be applied to mediate between the two 
height systems: 
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( ) ( )
( ) ( )

( ) ( )

2 2
2000 70

Helsingborg

0.296 1 sin sin

                            2000 1970

                            1970 1950     [m]

RH RH NAP

a e

a e

H H

H H

H H

γ φ φ− = ⋅ − − +

∆ + ∆ − +

∆ + ∆ −

  (4.2) 

where  and  are the apparent land uplift and eustatic sea-

level rise differences between the point in question and NAP, 
respectively. Using the RH 2000 land uplift model the uplift 
difference between NAP and Helsingborg is approximately 2 mm, 
which implies that the last term in Eq. (4.2) amounts to an additional 
negative correction of 40 mm. It is acknowledged that the epoch of 
the early NAP connection is uncertain, and that other factors very 
likely are involved that could result in large systematic differences 
between the two systems. Take for instance the 1950 connection 
between NAP and Helsingborg: at best its standard error is a few 
centimetres. It has also been reported that the reference benchmark 
No. 000A2530/13600 (see Section 3.3), which is the only remnant of 
the old NAP tide gauge, has moved locally as much as 20 mm; cf. 
Mäkinen (2004). However, it should be noticed that our main goal 
here is to take all known effects into account to see how good the 
agreement becomes. As long as the systematic difference between 
RH 2000 and RH 70 can be explained within a number of 
centimetres, everything must be considered to be in order. 
Furthermore, the most interesting thing is how large the internal 
differences are within Sweden.  

aH∆ eH∆

The differences between RH 2000 and RH 70 with the corrections in 
Eq. (4.2) applied are illustrated in Fig. 4.7 and the statistics can be 
found in Table 4.2. As can be seen, the mean (systematic) difference 
between RH 2000 and RH 70 is -35 mm, which is definitely 
acceptable; cf. the discussion in the last paragraph. It should also be 
noted that the difference is almost zero in the Southern part of 
Sweden, but the differences become larger the further ones moves to 
the north. This slope has been observed also in other circumstances, 
for instance when we have used the three precise levellings to 
estimate the land uplift in absence of other information.  
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Figure 4.7: Difference between RH 2000 computed with NKG2005LU 
(smoothed inverse distance model with minimum -2.00 mm/year) 
and RH70. Corrections applied for the different land uplift epochs 
and permanent tide systems. Unit: m. 

 

Thus, if corrections are applied for all known differences, the mean 
for the difference between RH 2000 and RH 70 is clearly acceptable, 
but RH 70 is affected by some kind of systematic error that increases 
to the north. Since the reliability and accuracy can be considered to 
be significantly higher for RH 2000 compared to RH 70, it seems 
reasonable to assume that the differences in Fig. 4.7 mainly reflects 
errors in the latter. Of course, no reference system is ever perfect, but 
considering the much more dense and homogeneous network (see 
Fig. 2.3), it seems justified to regard RH 2000 as the more accurate of 
the two. It can be seen in Fig. 4.7 that the internal differences between 
the two system show strong spatial correlations; see for instance the 
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large deviations to the north, but some more local effects can also be 
spotted. It should further be noted that the standard deviation for the 
differences (see Table 4.2) is 3.1 cm, which is more or less what could 
be expected. Otherwise we believe that Fig. 4.7 speaks pretty much 
for itself. It shows clearly how the two systems (frames) differ from 
each other. 

It should be pointed out that RH 70 was originally realised only 
through the levelling lines of the second precise levelling (see Fig 
2.3). However, during the work with the third levelling, new heights 
were determined inside the RH 70 loops, which led to so-called RHB 
70 heights. This explains that we have been able to compare RH 2000 
and RH 70 inside the loops. It should be noticed, though, that the 
RHB 70 heights has been computed by fixing the original 
benchmarks to their RH 70 values, using observations from the third 
precise levelling. This means that most of the discrepancies that can 
be seen in Fig. 4.7 stem from the system differences along the original 
RH 70 lines. The values in between are mainly interpolated.  

We turn now to the question what the comparison of RH 2000 and 
RH 70 might tell us about the land uplift model, i.e. NKG2005LU 
(smoothing inverse distance model with -2.0 minimum). First, the 
mean value shows that the datum difference caused by the two NAP 
connections is small. This means that the system resulting from 
choosing the uplift value to -2.0 mm/year in NAP is acceptable as far 
as the relation to RH 70 is concerned. It is more difficult to judge 
whether the line between observation errors and land uplift has been 
correctly drawn. We believe that the rather strong smoothing used 
for NKG2005LU is needed, and that the discrepancies that can be 
seen in Fig. 4.7 are mostly observation errors. Of course, it is 
impossible to prove this conclusively and one can always argue that 
we have drawn the line incorrectly. However, as long as we start 
from Vestöl’s point values, which imply a considerable smoothing in 
themselves, the adjusted heights are affected comparatively little by 
the choice of an exact or a smoothing interpolation (e.g. Fig. 3.14). It 
should also be pointed out that Vestöl (2005) has detected several 
gross errors in the RH 70 lines (see Section 2.2), which explains why 
some of the most notable features in Fig. 4.7 have not affected the 
land uplift model in a more pronounced way.  
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Let us now take a look at how RH 2000 computed using NKG2005LU 
agrees with the latest realisation of EVRS, i.e. EVRF 2000; see Ihde 
and Augath (2001). The differences between RH 2000 and EVRF 2000 
at a number of nodal benchmarks are illustrated in Fig. 4.8.   
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Figure 4.8: Difference between RH 2000 and EVRF 2000 at a number 
of Swedish nodal benchmarks. 

 

The most notable feature in Fig. 4.8 is the magnitude of the 
discrepancies, which are mainly caused by the use of different land 
uplift epochs. As discussed in Section 1.2, the levelling observations 
in question were reduced to the epoch 1960.0 before delivery to the 
UELN database, while RH 2000 utilises the epoch 2000.0. It is thus 
clear that the large vectors in Fig. 4.8 mainly reflect the land uplift 
during 40 years. Another observation is that the two systems 
(frames) only differ approximately 1 to 2 cm in Helsingborg in 
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southern Sweden, which is a somewhat surprising considering the 
land uplift difference between Helsingborg and Amsterdam (NAP). 
However, the question why RH 2000 and EVRF 2000 do not differ 
more in the southern part of Sweden will not be investigated further 
at the present point, but is left for the future. The main reason for 
presenting the comparison of RH 2000 and EVRF 2000 here is to 
emphasise that the two reference frames differ significantly in 
Sweden due to the widely separated land uplift epochs. This should 
always be kept in mind 

Let us finish this section by noting that a direct comparison of the 
RH 2000 adjustment of the Baltic Levelling Ring with the modern 
Danish height system (DVR 90) shows that the two systems differ 
approximately 2 cm at Själland in the eastern part of Denmark. Since 
the Danish system has not been established using the NAP (Schmidt 
2000), the result is very encouraging: The difference is sufficiently 
small to be neglected in almost all practical circumstances. 

4.4 Mean Sea Level (MSL) in RH 2000 
Above we have treated the choice of system definition and land 
uplift model for RH 2000. It is important to notice that these choices 
have not been performed blindly. Naturally we have studied the 
resulting RH 2000 heights and compared them both with the Mean 
Sea Level (MSL) along the Swedish coast and with other height 
systems. For instance, we would not have accepted NAP as zero 
level in case the resulting MSL was completely inappropriate for the 
Baltic Sea. It is the main purpose of this section to study the MSL in 
RH 2000 at the Swedish coasts. 

The MSL in RH 2000 at the epoch 2000.0 for 4 Swedish mareographs 
is illustrated in Fig. 4.9. The computation was made as a linear 
regression using 90-120 years of observations lasting until 2001. The 
data (yearly mean values) were obtained from the Swedish 
Meteorological and Hydrological Institute (SMHI). No corrections 
were applied to the sea level observations. 
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Figure 4.9: Mean Sea Level (MSL) in RH 2000 at 4 tide gauges. Epoch: 
2000.0. 

 

By studying Fig. 4.9, it can be seen that the MSL at epoch 2000.0 is 
reasonably close to zero in the western parts of Sweden and that the 
magnitude increases the further north one moves in the Baltic Sea. 
The main deviation is due to the sea surface topography and the fact 
that a zero permanent tide system is used for RH 2000; see Ekman 
and Mäkinen (1996b). Due to the mentioned effects, it is not possible 
to choose a zero level for RH 2000 so that the MSL becomes zero 
everywhere. Seen in this light, the obtained result seems good 
enough. The MSL is almost zero at the west coast and increases the 
further one moves into the Baltic Sea, which is appropriate 
considering the sea surface topography (Ekman and Mäkinen 1996b). 
It should also be noticed that what is discussed here is the MSL at the 
epoch 2000.0. As times moves on, the sea level will reduce due to the 
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land uplift. This means that the MSL of the northern parts of the 
Baltic Sea will become smaller and become even closer to zero in 
RH 2000. It is concluded that the choice of NAP as zero level yields a 
system with heights agreeing reasonably well with the MSL at the 
Swedish coasts.  
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5. Summary and discussion 
To be able to compute the new Swedish gravity-related height 
system RH 2000 using the observations of the third precise levelling 
in Sweden, the system (datum) needs to be defined by specifying  

• which land uplift model to use,  
• to which reference epoch the observations are to 

be reduced, 
• how the zero level should be fixed, 
• what type of heights that should be preferred and 
• which system that is to be applied for the 

permanent tide. 

It is admittedly somewhat unusual to include the land uplift model 
and epoch as part of the system definition, but we believe that this is 
motivated by the importance of the corresponding corrections in the 
Fennoscandian area.  

The main purpose of this report has been to present the work 
conducted at the National Land Survey of Sweden (Lantmäteriet) to 
derive a land uplift model for the computation of the new Swedish 
height system RH 2000 and to discuss the choice of system definition. 
This work has been conducted in close cooperation with the other 
Nordic countries within the height determination group of the 
Nordic Geodetic Commission (NKG). Due to the acute need of a new 
height system in Sweden, Sweden was forced to finalise the project 
in the beginning of 2005. To obtain heights that agree as well as 
possible with other European countries, it was decided that RH 2000 
should be defined as a Swedish realisation of the 2005 version of the 
EVRS (European Vertical Reference Frame). This implies (according 
to our interpretation) that the NAP is used to give the zero level, that 
normal heights are utilised and that a zero system is applied for the 
permanent tide. However, nothing is specified concerning kinematic 
(land uplift) corrections at the European level. The land uplift model 
and reference epoch therefore remained to be chosen on the national 
(Nordic) level. The epoch was chosen together with Finland and 
Norway to 2000.0.  

The computation of a land uplift model for RH 2000 did not start 
from scratch. Instead it was decided to continue the work so far 
made within the NKG. The NKG situation at the end of 2004 was 
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that two different models had been chosen for further consideration, 
namely the geophysical model of Lambeck et al. (1998) and the 
mathematical model of Vestøl (2005). The first model was tuned to 58 
mareographs in the Nordic area (see Ekman 1996) and to ancient 
shore line observations. Other knowledge of the physical behaviour 
of the Earth is naturally also taken advantage of. The Vestøl (2005) 
model, on the other hand, is a purely mathematical construct, which 
has been estimated from almost all available observations using least 
squares collocation (e.g. Moritz 1980). Besides the 58 tide gauges just 
mentioned, Vestøl utilised 55 GPS-derived absolute uplift rates from 
Lidberg (2004) as well as repeated levelling in Sweden, Finland and 
Norway. A detailed discussion of the different observations has been 
included in Chapter 2. This information, i.e. the land uplift models of 
Vestøl (2005) and Lambeck et al. (1998), has been considered as the 
starting point in the present work. This means that no attempts have 
been made to estimate the best possible model from scratch. Instead 
the goal has been to modify and/or combine the two models in the 
best possible way.  

It might be asked why the two models need to be modified in the 
first place. The answer is that none of them is sufficiently good for 
the present purpose. The main problem with Lambeck’s model is 
that it fits poorly with many of the available observations, most 
notably with almost all GPS observations in the central parts of 
Sweden. In Chapter 2 it has been found that the magnitude of the 
deviations is 1 mm/year or more from Kiruna in the north to 
Jönköping in the south of Sweden. Naturally, Vestøl’s model fits 
much better to the observations, but it has other drawbacks. First, 
Vestøl (2005) uses least squares collocation to estimate the uplift in 
the observation points only. An independent gridding algorithm is 
then taken advantage of to produce a regular grid. Unfortunately, 
this two-step procedure results in a bad behaviour of the model in 
those areas where only a few observations are available and at the 
outer borders. The bad behaviour consists of staircase cylinders, 
which can be clearly spotted in for instance Fig. 2.10. Another 
problem with Vestøl’s model is that it does not cover a sufficiently 
large area. To be able to connect to the NAP, the Nordic levelling 
networks had to be augmented with the networks of the the 
Netherlands, northern Germany, Poland and the Baltic countries, 
forming what has been named the Baltic Levelling Ring. Other 
purposes of defining the Baltic Levelling Ring is to be able to relate 
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the Nordic height systems to each other and to be able to check loops 
around the Baltic Sea and Gulf of Bothnia. To close the loops, 
however, other information besides levelling is required; cf. below. 
The final RH 2000 adjustment was to be made of the whole Baltic 
Levelling Ring network (illustrated in Fig. 1.1), which naturally 
requires that the land uplift model has to cover the same area. This is 
not the case for Vestøl’s model. The final problem with Vestøl’s 
model is that the contour lines are curvy, showing a clear zigzag 
behaviour. This indicates that the model might not have been 
sufficiently smoothed. Due to the rather high rigidity of the crust, the 
land uplift cannot have any funny shape, but is bound to be 
comparatively smooth; cf. the geophysical model of Lambeck 
illustrated in Figs. 2.14 and 2.15. Very likely, the small detail that can 
be discerned in Vestøl’s model is caused by observation errors. By 
some additional filtering, it is believed that the influence of the 
observation errors can be diminished and that a more realistic model 
can be obtained. 

The most important part of the work has been to investigate different 
ways to combine the models of Vestöl and Lambeck. The main 
strategy has been to start from Vestöl’s model as defined in the 
observation points and then use a remove-compute-restore technique 
with respect to Lambeck’s model. The compute step here means the 
application of an interpolation method. However, as it was not 
known from the start that Vestöl used an independent gridding 
algorithm, many tests were made starting from Vestöl’s grid values. 
The results from these tests have also been summarised, mainly to 
provide a background that motivate some of the later developments. 
The main result here has been that it is not suitable to start from 
Vestöl’s grid model. It is more or less impossible to get rid of the 
disturbing “cylinders”. Consequently, the only viable alternative is to 
consider Vestöl’s model as defined in the observation points. Four 
different interpolation methods have been investigated, namely 

• Exact inverse distance interpolation (Bjerhammar’s 
deterministic method) with power parameter 3. 

• Smoothing inverse distance interpolation (Bjerhammar’s 
deterministic method) with power parameter 3 and smoothing 
chosen so that the smoothest possible model is obtained at the 
same time as the surface does not deviate more from the 
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observations in an RMS sense than the corresponding 
standard errors.  

• Kriging as implemented in SURFER 8 (Golden Software Inc. 
2005) using a Gaussian variogram with Nugget effect. The 
parameters for the former part were found by analysing the 
spatial correlations for the field in question, i.e. for the 
differences between Vestöl’s and Lambeck’s models. The 
Nugget effect, which reflects the magnitude of the observation 
errors, was somewhat arbitrarily chosen to 0.2 mm/year for 
all observations. It is not possible in SURFER 8 to use different 
weights for different observations. 

• Least squares collocation with individual weights for each 
observation as implemented in GEOGRID (Forsberg 2004). A 
2nd order Markov covariance function is assumed with the 
parameters chosen by analysing the field. The estimated 
standard errors for the model of Vestöl (2005) were utilised for 
the weighting. 

The four interpolation schemes have been analysed in great detail. 
The smoothing inverse distance method was finally singled as the 
most suitable technique for the present purpose. The basic 
requirements put on the interpolation method are that the resulting 
model should 

• be as smooth as possible at the same time as it does not differ 
more in an RMS sense from the tide gauge and GPS 
observations than their respective standard errors. The model 
should thus “look” realistic, which is the requirement used to 
ensure that it is reasonably meaningful from a physical point 
of view.  

• approach Lambeck’s model in a good way outside the high 
quality observations in the central Nordic area. It should also 
behave well in areas with no data. 

The last requirement rules out many interpolation methods that are 
excellent in areas with observations, but which behave more or less 
arbitrarily otherwise. It is a clear advantage of the smoothing inverse 
distance method that it is robust at the border to, and immediately 
outside, the area with observations. Both the collocation and Kriging 
solutions (with the chosen parameters) have a tendency to oscillate a 
little bit too much in such areas. It should be pointed out that all 
interpolation methods can be tuned in different ways and that the 
above conclusions only refer to the methods with the chosen 
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parameters. For instance, Kriging with another type of variogram 
naturally behaves differently.  

The main result of Chapter 3 has thus been the choice of 
interpolation and extrapolation method (smoothing inverse distance 
method). To see that everything is in order with the corresponding 
Baltic Levelling Ring adjustments, the closing errors around the 
Baltic Sea and the Gulf of Bothnia have also been studied. This 
requires other information besides levelling, such as an 
oceanographic estimate of the difference in Mean Sea Level (MSL) at 
two benchmarks. The closing errors are smaller than expected, but it 
is not possible to conclude that one interpolation technique is better 
than the other in this respect. Everything have been found to be in 
order with the adjustment, though, 

The most important topics of Chapter 4 have been to discuss how the 
land uplift (sinking) in the NAP should be treated, to choose final 
land uplift model and to investigate the adjusted heights resulting 
from the chosen model and system definition. It is concluded that the 
2005 version of EVRS has to be interpreted as being realised through 
a fixed height of the NAP benchmark, which is independent of both 
kinematic movements and of the permanent tide system. Due to the 
fact that the smoothing inverse distance model (Chapter 3) yields a 
land sinking that is a little too large in NAP, the model is changed 
accordingly. This is accomplished by setting all apparent land uplift 
values below -2 mm/year equal to this value (-2 mm/year), which is 
the same technique as was utilised for the digitised model of 
Lambeck. Before this new minimum was applied, it was investigated 
how much the adjusted heights depend on the choice. It has been 
concluded that a change of the minimum value of 0.5 mm/year 
yields a 1 cm systematic difference over Sweden. Consequently, since 
it seems reasonable to assume that the standard error of the NAP 
uplift is 0.5 mm/year or a little higher, a systematic shift with 
standard error 1 to 2 cm must be expected over Sweden. Considering 
that the standard errors relative to the NAP are considerably larger 
(approximately 2 cm), it is concluded that the adopted strategy is 
sufficiently good for the purpose. 

After the choice of final uplift model (called NKG2005LU), the 
resulting RH 2000 heights have been investigated in a number of 
ways. It should be emphasised that it has not been the purpose of the 
present report to present any details concerning the practical 
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observations or the actual computation. It suffices to say that the 
Baltic Levelling Ring network, of which the RH 2000 network is a 
subset, has been adjusted after conversion of the levelled height 
differences to geopotential numbers utilising interpolated gravity 
values. Only levelling observations have been included in the 
adjustment.  

Let us turn now to the investigations of the adjusted RH 2000 heights 
referred to above. First, RH 2000 has been compared to the old 
Swedish system RH 70. Not surprisingly, the main difference is due 
to the land uplift during 30 years. It has also been investigated how 
well the systems agree after corrections have been applied of all 
known effects (land uplift and permanent tide system). The RMS of 
the differences reduces from 20.7 to 4.7 cm when the corrections are 
applied. Nevertheless, large differences remain in some areas, for 
instance in the northernmost parts of Sweden, where the deviations 
are larger than 1 dm; see Fig. 4.7 for details. Due to the comparatively 
high redundancy of RH 2000, it is likely that the largest errors are in 
RH 70. We believe that the comparison between RH 70 and RH 2000 
is interesting insofar as RH 70 is quite a typical height system. It is 
not meaningful to expect 1 cm agreement in the RMS sense between 
geometric (GPS/levelling) and gravimetric geoid heights (height 
anomalies) for such a system.  

The next height comparison has been to study the difference between 
RH 2000 and EVRF 2000. Also in this case, the deviations are large, 
mainly due to the phenomena of land uplift. The land uplift epoch 
for the Nordic block in EVRF 2000 is 1960.0, which means that 40 
years of land uplift show up. The main purpose of the comparison 
has been simply to illustrate the large difference; see Fig. 4.8. Finally, 
the RH 2000 heights have been compared with the modern Danish 
height system DVR 90. Even though our colleagues in the west have 
not defined their system using the NAP (they have utilised a number 
of tide gauges along the Danish coast), RH 2000 and DVR 90 only 
differ by approximately 2 cm in Själland (eastern part of Denmark).  

It has further been studied how well the final RH 2000 heights agree 
with the Mean Sea Level (MSL) at the epoch 2000.0 along the 
Swedish coast. The MSL (epoch 2000) is slightly below zero at the 
west coast of Sweden and increases the further one moves into the 
Baltic Sea. In the northern part of the Baltic Bay it is approximately 
18 cm. This increase depends on the sea surface topography; see 
Ekman and Mäkinen (1996b).  Since the postglacial land uplift will 
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reduce the MSL in RH 2000 as time passes, it can be concluded that 
the NAP zero level gives a reasonable fit to the MSL.  

The main part of the work presented in this report consists of the 
computation of a new land uplift model, the other aspects of the 
system definition being either decided on a European level (NAP, 
zero permanent tide, normal heights) or in Nordic collaboration (the 
land uplift reference epoch 2000.0). It might be thought that the path 
followed by the authors is somewhat strange. Why modify the 
models of Vestöl and Lambeck instead of constructing a brand new 
model from scratch, which fulfils all the requirements directly? The 
answer is partly that the time schedule did not allow for such far-
reaching excursions. Besides, it is believed that the final model, i.e. 
NKG2005LU, is about as good as a land uplift model can be at the 
present time, considering the available observations and knowledge. 
The model describes a smooth, realistically looking field that agrees 
well with the observations. In the central parts of the area, the model 
is more or less a smoothed version of Vestöl’s mathematical model 
while Lambeck’s geophysical model is utilised more and more the 
farther one moves from the uplift center. In this way, the main 
drawbacks of the two models are avoided and a reasonable 
compromise is obtained. The model NKG2005LU (RH 2000 LU) is 
illustrated in black and white and below. 
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Figure 5.1: Apparent uplift for the final land uplift model 
NKG2005LU (RH 2000 LU). 

 

As remarked in Sect. 1.5, the full text of this report was written in 
2005, but is not published until now (2007). No substantial changes 
have been made to the 2005 version except as noted in Sect. 1.5. Since 
2005, the land uplift model has been accepted as a Nordic model by 
the NKG and the RH 2000 adjustment has been taken as giving the 
official result of the Baltic Levelling Ring project. Furthermore, Olav 
Vestøl has published an improved version of his land uplift model in 
Journal of Geodesy (Vestøl 2006). The European Vertical Reference 
System is also about to change so that a number of stations will be 
used instead of NAP to give the zero level, and so that the 
observations are reduced to a common reference epoch by means of a 
land uplift model; see Ihde et al. (2006). 
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