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Abstract

TRUT, an acronym for "Triangelndts Utjémning" (Adjustment of
Triangulation Networks) is an EDP programme for adjusting
horizontal control survey networks, adapted for CDC 6600.
Adjustment is by the variation of parameters using observation
equations, and can be carried out on the plane or on any
chosen reference ellipsoid.

Input data includes parameters and observations. The parameters
are (i) coordinates (fixed or preliminary) for all stations,
(ii) scale factors for groups of observed lengths, (iii)
orientation parameters for groups of Laplace azimuths. The
observations consist of (i) direction series, (ii) distances,
(iii) Laplace azimuths, with their & priori errors. Feed-in of
correlated observations is also possible in groups consisting
of not more that ten observations.

Output data includes (i) adjusted parameters with their
accuracy relative to fixed parameters and, if required, the
relative error between arbitrarily selected pairs of stations;
(ii) residuals for all observations.

The number of unknown parameters which can be adjusted during &
single run is 330, e g 165 new horizontal stations, if the
network includes no other unknown parameters. Where the number
of parameters exceeds 330, the network can be broken down

into blocks, which can then be connected using Helmert's methcd
for block adjustments, cf section 2. The division of the input
data into blocks can also be carried out by TRUT, cf section 9.

In addition it is possible to feed in observation equations
(instead of observations). In this case TRUT is applicable to
any adjustment using the method of variation of parameters.
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1 INTRODUCTION

In 1966, Rikets allminna kartverk (Geographical Survey Office of
Sweden) had developed the first protctype of TRUT. It was

a single run adjustment on the plane with a capacity not
exceeding 70 new stations. Practical experiences during the

past decade have given rise to lively discussions and inti-

mate cooperation between the computing and field departments
which have resulted in the present-dey TRUT version, the

salient features of which are:

(i) a capacity of 330 new parameters per
single run

(ii) for larger networks: automatic division
into blocks and connection of those blocks

(1i1) dtiliuy to compute different scale factors
or orientation parameters for different
groups of distance or Laplace awlimuth

observations

(iv) extensive checking functions to detect
errors in the input data

(v) far-reaching elimination of human errors
through built-in consistency checks

The programme is described in details in sections 3-10.
Section 2 gives an example of Helmert block-method, sections
11-13 deal with comments and conclusions.

2 HELMERT BLOCK METHOD

An exhaustive description of the method is found in /1/ p 383;

it is also mentioned in /2/ p 32L4. Therefore, we here confine
us to a descriptive example.
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Fig 1 shows a triangulation network which, for adjustment
purposes, has been broken down into four blocks. In this
particular case, the blocks are bounded by, sO called, buffer
zones; but division into blocks by boundary lines is also
possible. Stations which fall within the buffer zones are
referred to below as junction or outer stations whilst the
stations within the blocks are called inner stations. Observa-
tions which fall within a buffer zone (cf fig 2) can be referred
to whichever of the adjacent blocks that is chosen but can,

of course, only be jncluded once with full weight.
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1f the buffer zones were to be replaced by boundary lines the
number of junction stations would be reduced by half, but,
on the other hand, series of directions observed at the
boundary points would belong to both blocks. If, however, the
network 1is a pure trilateration, a breakdown into blocks by
boundary lines does not suffer from this disadvantage.

Each element in the normal equations can be considered &s
belonging to two unknowns. For example, the element which is
formed by multiplying column ¥y with column X, belongs to
the unknowns y) /%x.... If the x coordinate is "~ denoted with
the station number ~and a plus sign and the y coordinate with
the station number and a minus sign the element can be defined
by -L1/+22. The diagonal element will thus be of the type
+i/+i or -i/-i and the right-hand side element ¥i/h. The right
hand side will be denoted with 900 000. Due to symmetry in the
normal equations i e element i/j =element j/i normally only
the upper right-hand side half of the equation system is
computed and stored by the computer.
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Normal equations are formed separately for each block whereby
the outer unknowns are placed last. The equations are then
reduced so that all the inner unknowns are eliminated (see
Fig 3). Thus, for each block a buffer matrix is obtained, cf

section 8.
T
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The next step is to add together all the buffer matrices, term
by term, to form a sum matrix. If the accuracy is not the

same in all blocks, the buffer matrices are divided by the
square of the standard error of the respective blocks before
addition. The solution of the sum matrix gives the adjusted
values for the outer unknowns.

If the total number of stations in all the buffers exceeds the
programme capacity these outer unknowns must, in turn, be
broken into inner and outer unknowns and the process described
above be repeated. The first stage of the adjustment is said to
take place at Level One and the second at Level Two. This
process can, theoretically, be continued, level by level, until
the number of stations in the sum matrix no longer exceeds

the capacity of the computer. However, due to rounding errors
the number of levels should be kept within acceptable limits.

Example of the formation of outer matrices

Three blocks with, together, four junction stations are to be
put together.

The junction stations are:

Block 1 127, 313, 366
Block 2 127, 313, uL78
Block 3 366, 478



STATENS LANTMATERIVERK

O’:

the standard errors of unit weight of the hlocks

which have been determined as 1 000 for Block 1 and Block. 2
and 1.41L for Block 3.

Block 1 L'PL, = 37.285 Redundancies = 27 o = 1,000
Un-
known| +127 =127 +313 -313 +366 =366 900000
nr
+127 | +3.178 | =0.967 | +2.938 | =1.0L7 | =2.360 | +1.005 | +2.503
=127 | =0,967 | +2.675 | +1.317 | +0.640 | -0,257 | -2,438 | =2,352
+313 | 42,938 | +1,317 | +3.867 | 40,836 | ~1,322 | =3,068 | +1,517
=313 | =1,917 | +0,640 | 40,836 | +1,996 | =1,732 | +2.159 | +0,013
+366 | =2,360 | =0,25T7 | =1,322 | =1,732 | +1,735 | +2,336 | +0,756
~366 | +1,005 | -2,438 | -3,068 | +2,159 | +2,336 | +2.617 | +1.,182
Bloek 2 L'PL = 29,267 Redundancies = 36 o = 1,000
Une
known| +47T8 =478 +313 =313 +127 127 900000
nr
+478 |+3,675 | +2,470 | =1,516 | «0,937 | =3.,014 | +1,015 | +1,336
<478 42,470 | 42,616 | 42,941 | 43,382 | -2,930 | =0,66L | +2,LL3
+313 (21,516 | 42,941 | 43,074 | 41,175 | =3.587 | +2.635 | +0.777
~313 |=0,937 | +3,382 | 41,175 | +3,675 | +1.770 | -0,453 | -0,532
+127 -30011‘ -20930 -3.587 +10770 +2ol97 +2.122 —2.338
=127 (41,015 | =0,664 | 42,635 | -0.453 | +2,122 | +2,737 | +1.891
Block 3 L'PL = 66,268 Redundancies = T2 o = 1,41k
Un-

known| +366 =366 +478 =478 900000

nr

+366 [+2.866 | +3,178 | -1.,242 | -0,634 | =0,884

=366 |+3.178 | +3.426 | +2,37h | +1,946 | +2,Lk2

+478 |-1,242 | 42,374 | +2,854 | -3,040 | +1.886

478 |=0.634 | +1.946 | -3,040 | +2.678 | +1,020




STATENS LANTMATERIVERK

Sum matrix L'PL = 99,686 Redundancies = 135
Un-
known| +127 =127 +313 =313 +366 -366 +478 -478 1900000
nr '

+127 | +5.375 | +1,155 | -0,649 | 0,147 | =2,360 | +1,005 | =3,014 | -2,930 [+0,065
=127 | 41,155 | +4,797 | +3.952 { +0,187 | =0.25T7 | =-2,438 | +1,015 | -0,664 |=0,461
+313 | -0,649 | +3,952 | +6,941 | +2,011 | -1.322 | -3,068 | =1,516 | +2,941 |+2,294
-313 | =0,147 | 40,187 | +2,011 | +5,671 | =1,732 | 42,159 | =0,937 | +3.382 |-0.519
+366 | =2,360 | =0.,257 | =1.322 | =1,732 | +3.,168 | 43,925 | «0,621 | =0,317 |+0,31k
-366 | +1,005 | -2,438 | =3,068 | +2,159 | +3,925 | +4,330 | +1,187 | 40,973 {+2.403
+478 | =3,014 [ 41,015 | -1,516 | -0,937 | -0,621 | +1,187 | +5,102 | +0,950 [+2,2T9
-U78 | 2,930 | -0.664 | +2,941 | +3,382 | =0,31T7 | +0,973 | +0,950 | +3,955 |+2.953

Element «127/+313 in the sum matrix is obtained as

follows:

from Block 1 1.317 : 1,000
from Block 2 2,635 : 1,000
from Block 3 —

in the sum matrix 1,317 + 2,635 = 3,952

Similarly for element +478/+478:

from Block 1 —
from Block 2 3.675 : 1,000
from Block 3 2,854 : 2,000

in the sum matrix 3,675 + 1,427 = 5,102

Similarly for LZ'FPL = 900 000/900 000

from Block 1 37.285 : 1,000
from Block 2 29,267 : 1,000
from Block 3 66,268 : 2,000

in the sum matrix 37.285 + 29,267 + 33,134 = 99,686
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The number of redundancies in the block = total number of
observations minus the total number of inner unknowns, Or,
in the normal case:

total number of observations minus the total number of
eliminated station corrections minus twice the total number
of inner stations.

The number of redundancies in the sum matrix = the total
number of redundancies in the blocks. Thus, in the case
above, the number of redundancies in the sum matrix =

27 + 36 + 72 = 135 5
(Note: the number of redundancies must not be divided by o ).

3 INPUT DATA

Computation can be carried out on the plane or on any chosen
reference ellipsoid.

The following data are read in:

Coordinates of the fixed stations.
Approximate coordinates for the inner stations.
Approximate coordinates for the junction stations.
Values of the fixed scale factors (for groups of observed
distances)
Approximate values for the inner scale factors.
Approximate values for the outer scale factors.
Values of the fixed orientation parameters (for groups
of observed Laplace azimuths).
Approximate values for the inner orientation parameters.
Approximate values for the outer orientation parameters.
0 List of pairs of stations for which the relative standard
errors are to be computed.
11 Observed series of directions, with & priori standard error.
12 Measured distances without scale factor, with & priori
standard error.
13 Astronomic azimuths without orientation parameter, with &
priori standard error.
14 Contributions to normal equations.
15 Measured distances with scale factor, with & priori
standard error.
16  Astronomic azimuths with orientation parameter, with &
priori standard error.

=w e

= \O =~ O\\n

When correlated observations are present, each group of data
12 resp 13 is followed by the weight matrix. For computation
on the ellipsoid the major semiaxis and the square of the
eccentricity of the reference ellipsoid are also fed in.
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The coordinates (data 1-3) are given in metres for computation
on the plane, and in centesimal degrees or sexagesimal degrees,
minutes and seconds for computation on the ellipsoid. Cf encl 1.

The scale factors (data L-6) are given with their number and
(value minus one) in units of ppm. The orientation parameters
(data T7-9) are given with their number and value in centesimal
seconds. Cf encl 2.

Direction measurements (data 11) are given in series, in
either centesimal degrees or sexagesimal degrees, minutes
and seconds. Each direction should have an & priori standard
error (cf encl 3). Direction series may contain repeated pointings
on the same station (e g R O closure). The number of pointings
in a series must not exceed twelve. Station adjustments are
carried out beforehand only in those cases where the adjusted
directions remain uncorrelated, e g by Schreiber”s method or
by full rounds. Otherwise all the observed series are fed in

unadjusted.

Measured distances are given in millimetres with & priori
standard error for each distance, without (data 12) or with
(data 15) scale factor. Cf encl k.

Measured azimuths are given with a priori standard error for
each azimuth, without (data 13) or with (data 16) orientation
parameter. Cf encl L.

Should these a priori standard errors for any reason be omitted,
the computer automaticallly assumes a value of 1C¢C for observed
directions and azimuths and 1 cm for measured distances. It is
also possible to multiply & priori standard errors for a group
by a constant.

No reductionc are carried out during run time which means

that field data must have been reduced to the centre marks and
to the reference ellipsoid or projection plane before being
fed into the computer. The feed out from other pre-adjustment
programmes is such that it can be fed into TRUT without the
need for any changes in form or content.

In the case of astronomic azimuths the observed value A must
also be reduced to the geodetic azimuth as as follows

a =A-(A-2) sin ¢

g

where A and X are the astronomic and geodetic longitudes for
the Laplace station and ¢ the latitude. Where computation

is carried out on the plane the additional correction (6 - c)
is required;
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arc to chord correction

[e3)
1}

convergence of the meridian

(¢
1}

&g must be computed from final coordinates which at this
stage of the computation are unknown. Using approximate
coordinates_for the reduction, a_is obtained and is
related to ag as follows &

0y = o, +dx sin ¢ = (A - ) cos ¢ d¢ (ellipsoid)

or

a, = o +dx sin ¢ - (A - A) cos ¢ d¢ + d6 - dc (plane)

The term (A - XA) cos¢ dé can be omitted since even where (A - i)
cos ¢ = 100°C and d¢ = 10°C (= 100 m) its value does not
exceed 0.002°C, In addition, it is of no importance whether

the astronomic or geodetic latitude is used.

When Transverse Mercggor is used, the size of the term 4§ 1is
approximately 0.0077 ~ (y dAx + Axdy), and is thus dependent

upon the distance from the Central Meridian and the difference

in x between the instrument and object stations. Where Ax < 50 kms,
dAx < 2 m, y < 400 kms and dy < 10 m, 48 will be < 0.01¢C,

Where dy < 10 m the term dc can be simplified to dX sin ¢

Based on the above assumption a will be on the plane:
g

a_=a_ +dx sin ¢ - 0+ 0 - dx sind = a
g g g

and on the ellipsoid:

a =a_ + dx sin ¢
g g

See further section b d.
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4 OBSERVATION EQUATIONS

4 a Notations

The following symbols are used in section bL:

w

>

egeo 2> >8R 3 O

major semi-axis of the reference ellipsoid
convergence of the meridian

first eccentricity of the reference ellipsoid
second eccentricity of the reference ellipsoid
{observed value) minus (from approximate coordinate
and parameters computed value)

(1 + k) is the approximate value of the scale factor
sought increment to k

observed value

side length computed from approximate coordinates
tg ¢

correction to observed value

approximate plane coordinates

sought increments to x, y

sought increments to ¢, A, in units of length
approximate value for the bearing or azimuth

of the zero of observed directions

sought increment to z

observed astronomic azimuth

a(l - e2) : W3 = radius of curvature in the meridian
a : W = radius of curvature in the prime vertical
1+ n2

1 - €2 sin? ¢

azimuth computed from approximate coordinates

A - (A - 1) sin ¢ = geodetic azimuth derived from
astronomic observations

o _ computed with adjusted geodetic longitude, i e
(% + d))

approximate value of the orientation parameter of the
Laplace azimuth

sought increment to B

arc to chord correction

e’ cos ¢

coefficient of B

astronomic longitude

approximate geodetic longitude

sought increment to A

constant for converting from redians

approximate geodetic longitude

sought increment to ¢

plane bearing computed from approximate coordinates

The index, o, refers to the instrument station andé i, to the

object station. The values of t, M, N, V, W, and n

are computed

for ¢ = (¢O + ¢i) 1 2.
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4L b Observation equations on the plane

¢y and s are computed as follows:

yi_yo

X. — X
1 (¢]

arctg

<
"

2

(4]
fl

Sk, -x 0%+ (v, - y)

1 O 1 o}

The observation equations become:
for observed directions
P

- (Xi B xo)dyo * (yo - yi)dxi -

- (xO - xi)dyi } -dz - (1 + 2z -)

The term dZ is normally eliminated during the build up of
normal equations

for distance measurements

= -1 - - -
V== {(xi Xo)dxo + (yi yo)dyO + (xo xi)dxi
+ (y, - yy)dy;) -sdk - (2 +kl =)

The equations for data 12 (ef section 3) do not include the
terms with k and dk

for azimuth observations

p
v = = Uy, =y axg = (x; - x)ay, + (v, - y;)dx; -
- (xO - xi)dyi} -k *dg - (1 +«xB =)
where
1= oy = Al - (Ao - Ao) sing - ¢  + &,
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x = coefficient (e g sin ¢ ), taken from the data card
When k = 0, the programme &ssumes the value 1.0

The equations for data 13 (cf section 3) do not include
the terms with B and dB.

4 ¢ The Mid-Latitude Formula

On the ellipsoid o and s are computed using the
Mid-Latitude Formula

2
M(¢., - ¢ ) (x, =)
P=gcosasm = o(1- 120(2+3t2+2n2)c032¢-
e L 2hp )
2 2
(¢. = ¢ )" n
-_Lg_,f——(tz-l-n‘?-hnzta)}
80° V
N cos ¢(A. = X)) (A.-)\)2 sin2¢
Q =8 8in a = 2 o{_ 1 °? +
P 2hp
2
(. = ¢ ) *
+_'2'—h_'1 2 (l*n2-9n2t2)§
24" v

2
(A, =1)
= © = - i 1 o 2
R ai - 180" ao (x. AO) sin ¢{l +-T2_‘)5_V2 cos ¢ +

2
(¢, = ¢_) ’
b= O (34802 4 50°)
2oV
g = P2+Q2
- R
ao arctg % -3

Q4+ R
a; = arctg 3 +t 3¢ 180°

The formula is correct to within 1 mm for distances less
than 175 kms at latitude 47", At higher latitudes the
accuracy decreases and at latigude 69,5 the error over
a distance of 100 kms is 0,02 in azimuth and 1.5 mm
in distence, Errors increase with the 5«-th power of the
distance,
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4 4 Observation equations on the ellipsoid

By substitution

the observation equations become (a_, a. and s are
computed with the Mid-Latitude formula):

for observed directions:

2 2

_ P ) __s - _
Vo= {sin o (1 3 ) dxo cos a_ (1

n
N

. S - S -
+ sin oy (1 + 5 MN) dxi - cos ai (1 + E—ﬁﬁ) dyi}

- (dz - dko sin ¢O) - (72 + 1z - ao)

The term (dz - d A_ sin ¢ ) is constant for all observations
in a series. It is normally eliminated during the formation of
normal equations

for distance measurements

v=-cosa dx - sina dy - cos a. dx. - sin a. dy.
o 0 o Yo i i i i

- sdk - (7 + kL - s)
Cf corresponding comments in section 4 b

for azimuth observations
e . 82 it 52
V=< {sin a (1 - T ) dx_ - cos a (1 - 3
2 2

- s -
MN> dxi =~ cos a, (1 + Zriﬁi) dyi }

) dy

S

+ s1 .
sin a; (1 + z

+ax sin ¢ - «kdB - (1 + kB - ao)
Here

_ B ~ . . )
L=A (AO Ao) sin ¢_ + dx_ sin ¢

and, therefore, cancels out the term dA_ sin ¢ 1in the formula
above. Hence the observation equation may be wPitten

=_F° - _ _ _ s -
v=-2 A } - «dB (A (/\O AO) sin ¢_ + B a}
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On the card with observation data the values for Ao, AO and
are given. AO, ¢ and B are obtained from data 1-3 and 7-9. 'The
computation of tRe last brace is carried out by the programme.
Cf also corresponding comments in section 4 h.

4 e Standardization of the observation equations,

Before forming the normal equations the observation equations

must be standardized. This is done by dividing them with the

& priori standard error whereby the standardized observation
equations become dimensionless, In this connection, the unit

used for defining the standard error must be considered, In

the examples discussed below the computation is carried out on the
plane and without scale factor or orientation parameter, but the
reasoning and conclusions can also be applied to the other cases.

The observation equation for an observed direction is
i =Y, X =%
v = O{( —T)(dxo - dxi )-(—-?——)(dyo - dyi}-dz-(Z'l'z-W)

v is, here, expressed in angular measure which means that

even dz and h =17+ z « y must be expressed in the

same units, Furthermore, the first brace must be dimension-

less and this can most easily be achieved by expressing

(yp =¥y)y (x; =x) s, dx and dy also in the same length units.

After standardization, the whole observation equation will be
dimensionless which means that the & priori standard error for
the observed direction must be in the same angular units as the
correction v and the value h.

This reasoning applies also to azimuth observations.
The observation equation. for distance measurements is:

xi-xo Yi-yo

v and h = !l . g must be expressed in the same length units, in the
units used for dx and dy, According to the reasoning above,
the & priori standard error must also be expressed in these
units,

In TRUT, the units are, during the computing stage;

for directions and azimuths 1°¢

for distances 1 decimetre
At the input and output stages other units are used but these

are converted by the computer to and from centesimal seconds
and decimetres.
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5 FORMATION OF NORMAL EQUATIONS

Here we shortly recapitulate what was stated in section 2,
concerning the numeration of the elements in the normal
equations. For instance, the element which is formed by
multiplying the column belonging to the y-coordinate of the
station 10050 with the column belonging to the x-coordinate
of 10352 will be defined by - 10050/+10352. The column of

the right hand side is denoted with 900000, a scale factor
with its number increased with 700000, an orientation para-
meter with its number increased with 600000.

Each element in the normal equations matrix is allocated a
fixed position in the core storage. The position depends upon
the sequence in which the approximate coordinates, scale
factors and orientation parameters are read into the computer.

The observation equations are not stored during the run time.
An observation of uncorrelated distance or azimuth is fed into
the computer, its observation equation is formed and standar-
dized, the contributions to elements of normal equations are
computed and added to the allocated cells in the core storage.
Then the next observation is fed in and the above process is
repeated. This process is illustrated by the following example:

The distance between stations 31 and 53 has been measured. The
scale factor number is 67. The observation equation becomes

s h
a dx3l + b dyBl + f dx53 + g dy53 - dk67 o

v=
X - X y -—
g = 3t 53 . _ £ p =3t "33 _ _ g
ms ms
h = as in section L4 a
_ a 2 3 2
s = “?x31 *53)" + (¥3; = ¥g3)

when the computation is carried out on the plane and when
m = & priori standard error of this observation.

The observation gives rise to the following contributions:

To the element +31/ 431 aa
+31/ =31 ab
+31/ 453 af
+31/  -53 ag
+31/700067 -as:m
+31/900000 ah:m

-31/ -31 bb
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-31/ 453 bf
-31/ =53 bg
-31/700067 -bs:m
-31/900000 bh:m
+53/  +53 ff
+53/ =53 fg
+53/700067 —fs:m
+53/900000 fh:m
-53/ =53 ge
-53/700067 -gs:m
-53/900000 gh:m
700067 /700067 Ss:mm
700067/900000 —sh:mm
900000/900000 hh :mm

As to the correlated observations of distances or azimuths,
the procedure is as follows:

The mutually correlated measurements are given in groups
together with their non-diagonal weight matrix P (cf encl 5).
From each group the attaching matrices A'PA, A'PL and L'PL
(where 4 = matrix of observation equations in the group and

L = column matrix with elements h) are built up and their
elements are then added to the allocated cells in core storage.

A direction measurement gives rise to an observation equation
comprising besides the sought coordinate increments dx, dy also
the station correction dz (cf section 4 b) or dz + dA_ sin ¢
(cf section 4 d). Each station correction occurs only in one
series. Therefore, the directions are given in series, and the
attaching matrices A'PA, A'PL and L'PL are built up, whereby
the station correction is eliminated. This can be done using,
for instance, Schreiber's method. In TRUT another method is
used the description of which, however, falls outside the scope
of this paper. Cf /3 /.

One more type of input data is possible: ready-made contributions
to normal equations (cf encl 6). It is generally used for
reading in the buffer matrices, but it is also useful where

the information differs from the before mentioned types. In
these cases the contributions to normal equations are, in a
suitable way, computed beforehand and fed in with this input-
routine for further treatment.



6., SOLUTION OF NORMAL EQUATIONS

\\\

N

4

<} r)gjf: OB~
L
[ [

-
=

17

= A'PL

hi = element in the i:th row
T R h. should not be confused with
h' in the previous sections
L and 5

Here h, = I @h:m)

= reduced triangular matrix

N = normal equation matrix
N n,n
N N H : :
N n. .= element in the 1:th row
\~\ 1+ and j:th column
N H = right-hand side
n,l

= reduced right-hand side

In Cholesky”s elimination method a triangular matrix T is

sought such that
T T = N

= A'PA

= inverse triangular matrix = T

The relationship between the elements in N and T will be,

where i ¢ j

i=l

I
m=1l
ial
t.. = (n,., = L t..t .):¢t..
m=l

ct
[ ]
=}
[ ]

t .t .
mi m

t.., = 0 for 1 >

1J

For the right hand side the following applies

i-1
r, = (h. = L ty T ) ¢ .
1 m=1 m 1

Using the above formulae the elements n,.

and

in the

core storage are successively replaced 1be t.j *and r

respectively, The term L'PL 1is replaced by

L'PL = R" R = V' PV

1
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The increments u. to approximate coordinates are obtained
using the formula

n

u, = (ri- z utim):t.i
1 m=i+l 1

and computing backwards from the last unknown u . The values
and u,. are thus the increments to the x "and y co=-
ofdinates “respectively, for the first new station,

For computations on the ellipsoid the increments u  and
u_ are transferred to

u u
d¢ = M P and i = N cos¢ P

respectively, where

M = radius of curvature in the meridian

N = radius of curvature in the prime vertical,in the
actual stations,

For computation of standard errors the inverse C is
required, C is computed by successively replacing the
elements in the T matrix as follows:

1, compute all diagonal elements

c,. =1 :¢t,.
11 11
2. beginning with the first row, compute row for row from
left to right
Jj=1
c., = = ( T e. t_.)vec,.

ij pei IR M 3i

or more simply from a computing point of view

j=1
.. = = ( L a. & .) sa8..
ij pei IR M) 33

where &ij are the element values in the mixed matrix T/C,

Also here, the elements ti. are successively replaced by
¢ij. The normals and thei?’ solutions thus require totally
5 (n + 1) (n + 2) cells in the core storage.
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7. CONPUTATION OF STANDARD ERRORS AFTER THE ADJUSTMENT .
MODULI CONCEPT

C
AN C2
N Each row in a matrix can be
N considered to be a vector
N where the number of components
N~ G is equal to the number of
(V) N colums in the matrix. Cf /4/.
N\
N

The row vectors in the C matrix will, in the following, be
referred to as moduli and the notation for them will be C1s Coy
ceey C 4 )

n

cy = {011, Cips Cqzy *veey i
e, = 0y chyy Cpzy =eves Cop
_ r

Cn= ‘O ’O ’O ) s 00y crm]

where ¢, = components in modulus Ei

To each unknown belongs a modulus. Vector algebra can be used by
computing with modulis

1. The scalar product of two moduli

cy . cj
n
is defined as ¥ c, C.
im " jm
=1

2. The absolute value or Euclidean norm of modulus

n21_

- _ 3

ciI = (z Cim)
m=1 .

3. The modulus can be considered as a straight line in n-dimensional
space. The angle between two moduli ci and cj is

c., * C,

(Ei, Ej)z arccos :§;-j:3
%0 |1
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Moduli can be shown to possess the following properties:

1. The standard error m, of an unknown, after adjustment, can be
determined as *

m, =1+ IE.l
i o171

standard error & posteriori (= standard error of unit
standard error & priori weight)

with o=

2. The covariance between two unkmnowns i and j after adjustment is

?5 - ¢
o i J

3. The correlation coefficient between two unknowns i and j
after adjustment is equal to the cosine of the angle between
the moduli.

4. The law of propagation of error can be written in linear form:
If the adjusted quantities are transformed as follows

— < +
f = fxx + ny + ¢zz

g = gx+ gyy + 8,7
the moduli for the new quantities f and g will be

Ce = fx o, * fy Oy + fz c,

S =g T +g 3 45 3
ggxxgyy:’zz

These new moduli can te treated further as described above under
1 -3, If 2 new quantity h is formed from f and g ie.

Tt g &

After each completed adjustment the computer is programmed to
evaluate the standard error of coordinates for each new station in
relation to both the fixed stations (regional standard error)

m = ole '
X, X,
1 1
n = 0 E‘. ‘
£l Iy
2 2
m ={{m + 1
r. X,
X 1 1
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and in relation to those stations, fixed or new, with
which it has contact through direct measurement (local
standard error). In computing the local standard error, c
och Eyi are obtained from the submatrix of order two of
normal equations which includes only the elements +i/+i,
+i/-1, -i/+1i, -i/-1.

xi

When required (cf data 10 in section 3) the computer is
programmed to evaluate, for selected pairs of stations,
also the following

(1) the standard error along the line joining

stations, m_ = oc

s s

(ii) the standard error perpendicular to the
line joining the stations n = o|ct|

(i1i1) the relative standard error
/2
m_ = Ym~ 4+ m2 )
r S t

The moduli Es and Et are computed as follows:

- {cosoa. c . +sino. ¢ . +cosa.c . +sina. c .}
i Txi iyl J %3 J

Q
]

Q
1]

sina. ¢ . —cos 0. ¢c . +sina. c . — cos a. C
1 xi i yi J xJ J

The stations may be chosen in any way, they need not be
neighbouring stations. When computing on ellipsoid,
however, it must be born in mind that s and o are computed
with mid-latitude formula and, therefore, the distance
between the stations must not be so large that the formula
will give too erroneous results,

For separate computing of the standard error in chosen
functions of adjusted coordinates a print-out of the moduli
for the final 12 unknowns can be obtained.
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8. PROCEDURE FOR CONNECTING BLOCKS

The previous sections have dealt with a completed adjustment.
If, however, a block adjustment is to be carried out using
Helmert's method the procedures described in Sections 6 and 7
must be modified as follows:

for the outer unknowns the following is obtained in the buffer
matrix ( = partial adjustment)

k
by Pyt B tm kY
r.,=h,,6 - % t . T
137743 7 0y miom
where k is the row number for the last inner unkmown.
The term L'PL  1is reduced by 1§ r; Ty
=m

The buffer matrix is punched out on cards as shown on emcl 6.

The buffer matrices from the various blocks are then connected
as described in Section 2. By the final connection definitive
coordinates are obtained for the stations which were included in
this stage of the adjustment. Increments to the approximate
coordinates for these stations, the standard error of unit weight
and the regional standard errors of the coordinates are also
obtained. The local standard errors will be erroneous.

If this final connection is carried out at Level One, the easiest
way to obtain the adjusted coordinates for inner stations is to
readjust all the separate blocks using the previous outer points
as fixed points. If, on the other hand, the final connection takes
place at a higher level the computation of the inner unknowns in
lower level buffers can be computed as described below:

If the unknowns x, and ¥y in the buffer matrix ere to take the

values dx:L and dyi computed at a higher level the following

contributions must be added

12
+i/+1 = 1012 +1/900 000 = dx, * 10

~i/=i = 1012 -1/900 000 = dy, * 1012

The value V'PV will clearly no longer be correct:

but since V'PV was obtained from the final connection this 1is
of no importence. The value V'PV must however be positive and,
therefore, a contribution

900 000/900 000 = I (csxi dx, + dy, dyi) . 10%2 is sdded.

A1l values obtained for standard errors will be erroneous.
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9 DIVISION INTO BLOCKS

The partitioning of the network into blocks was formerly
carried out by hand. This was a tedious and time-consuming
operation that often also led to erroneous results. The most
frequent and critical errors were the following:

(1) a station was entered as outer unknown
in one block and as inner unknown in
the other

(ii) an outer station had slightly different

approximate coordinates in different blocks

In order to eliminate these difficulties the routine BLOCK

was developed in 1976 as a preprogramme for TRUT. A detailed
description of the programme BLOCK falls outside the scope

of this paper and, therefore, only the most important features
of the programme are described here.

The boundaries of a block are given as a closed polygon not
exceeding ten points. The boundaries need not coincide with
the triangulation sides. All stations within this boundary are,
to start with, considered as inner stations belonging to

the block. This procedure is carried out for all blocks.

Then the observational data is divided between the blocks. As

an observation (or a direction series) must not contain stations
belonging to different blocks, several inner stations must be
altered to outer stations. At the same time also the scale
factors and orientation parameters are allocated the right
block or labelled as outer unknowns.

As the correct standard errors are obtained only by the final
connection process, the stations for which the error investiga-
tion is required, must be & priori outer stations. In addition,
there might also be stations that must remain as outer stations
after the connection process. Therefore, in the input data

the stations are divided into four groups:

(i) fixed stations

(i1) stations that may be inner or outer stations
(iii) & priori outer stations

(iv) stations that must remain outer stations

after the joining procedure

The scale factors and orientation parameters are divided in the
same way.

Nuring the run in BLOCK the whole data deck is divided into
suitable blocks, ready to be fed into TRUT.
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10 OUTPUT DATA

The output list consists of
(1) the checked input data
(ii) the results of the adjustment

For all observations the value h = (observed value) - (the
value computed from approximate coordinat
is computed. If [hl is larger than the beforehand given

tolerance, the observation is rejected and a notation written

in the output list.
The checked input data comprise

1 When computation on ellipsoid: the values of the
ellipsoid major semi-axis and the square of
eccentricity

2 Name, number and (approximate) coordinates for
fixed, inner and outer stations

3 Number and (approximate) values of scale factors
(fixed, inner, outer)

4 Number and (approximate) values of orientation
parameters (fixed, inner, outer)

5 Direction series with their h-values and the
z-value for each series

6 Distance measurements with their h-values

7 Azimuth measurements with their h-values

The programme furnishes the following results:

1 Increments (in metres) to the approximate coordinates
and their regional and local standard errors.

2 The adjusted values of scale factors with their
standard errors

3 The adjusted values of orientation parameters
with their standard errors

4 The standard error of unit weight, the number of
redundancies and the value V'PV

5 The definite coordinates

6 TFor selected pairs of stations (cf section T), the

values of s, m , m_ and m
s t r

Ad ‘usted observations and their corrections

Wi-n required: standardized observation equations
ar . the noy =l matrix, triangular matrix and
tr:angular inverse, or only 12 last rows of those
muirices.
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The following data is punched out:

1 Adjusted values of coordinates

2 TFor partial adjustments: buffer matrices
For large networks the amount of cards would be
too great, and they are, instead, stored on a
discfile

TIONAL COMMENTS

|
[
3

o
e

The most important limitations are

(1) The total number of unknowns (inner and
outer) in a block must not exceed 330

(ii) Number of directions in a series must not
exceed 12

(1i1) For computing on the ellipsoid, the side
length must not be longer that 175 kms at
latitude 47° and 100 kms at latitude 6975,
unless the errors in mid-latitude formulsa
exceed 1.5 mm or 0.027 ",

There are no limitations for the amount of observational data.
Some additional features of the programme are the following:

(1) Observations which give rise to h-values
exceeding the arbitrary prescribed tolerance,
are rejected

(ii) For the connecting process, standardization
factors of buffer matrices can be introduced

(iii) Computation of buffer matrices, connecting
process and solution (or reduction to & new
buffer matrix) of normals can be done during
the same run time.

If the number of unknowns in a network does not exceed 330, i e
the Helmert Block Method is not applied,

(iv) the programme can be used iteratively: after
a first adjustment the approximate coordinates
are replaced by the newly adjusted values,
and the adjustment is automatically repeated.
Iteration is stopped, when the quotient

R'R : L'PL

is less than 1 * 1076



STATENS LANTMATERIVERK 26

(v) During the building of normals, a summation
of observations to and from each station is
carried out. Those new stations, where the
number of observations is less than two,
are cancelled and the computation is auto-
matically repeated.

It is also possible to feed in observation equations. In this

case TRUT is applicable tc any adjustment problem. The number
of unknowns is then limited to 200.

12 ROUNDING ERRORS

Theoretically, the Helmert Block Method permits the rigorous
adjustment of networks, however large they may be. But, in
practice, the influence of rounding errors may make the solution
invalid.

The loss of computing accuracy can be estimated by the use

of the zero-matrix. If a network, containing direction, distance
and azimuth okservations, is adjusted without any fixed station,
but with cne outer station, the elements of the buffer matrix

(of order 2 x 2) should, theoretically, be noughts, and deviations
from a zerc value are due to rounding errors.

The satellite traverse Tromsd (Norway) - Catania (Sicily)
consists of 373 stations. The total number of observations is
2303. The zero-matrix of Hohenpeissenberg (56 kms SW of Munich)
became {uvnits: decimetre and centesimal second):

[ 0.09 0.00] | ;1,6
L ©0.00 0.45

Diagonal elements of the other unknowns were approximately

0.1 - 1.0. Thus, the computing accuracy can be estimated to

5 - 6 significant digits, i e the influence of rounding errors
does not exceed 1 millimetre if the increment does not exceed
100 metres.

13 MISCELLANEOUS EXPERIENCES AND HINTS

TRUT on the eilipsoid has been used mainly for international
adjustments, such as RETrig (Re-adjustment of European
Triangulation Networks) and satellite traverses. On the plane
TRUT has beer employed for computation of the new national net-
work of Sweden. The adjusted networks have been of the order
400-800 new stations, and the connection process has generally
been carried out at level one. The computation time varies,
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depending on the amount of the observational data and the
number of unknowns in each block, but as orientation it

can be mentioned that an adjustment of a network of 750 new
stations, divided into & blocks, required 900 system seconds
in CDC 6600. This time includes the formation of the buffer
matrices, the connection process and the back-solution for
the computation of the inner stations. Experiences have shown
that for computation of blocks larger than 100 new stations
the computation time will increase very rapidly, so the
maximum capacity (165 new stations) should be used only if

1
tely necessary.

The greatest computation volume, however, is the adjustment
of smaller networks on the plane which can be computed in
single runs. In order to make the administration easier, and
for economical reasons, a reduced version PLANETRUT, with
capacity of 100 new stations, has been written out.

TRUT furnishes three kinds of standard errors (cf section 7):
regional, local and relative standard errors.

In large networks with only one fixed station the regional
standard error is of little value. For example, in the
Satellite Traverse Tromsd-Catania the statement "the regional
standard error of the station Panker (on the boundary Denmark/
Germany) is 66 cms" means the uncertainty in relation to the
single fixed station Hohenpeissenberg in Bavaria, but tells
nothing about the accuracy between the stations in the
vieinity of Panker. The local standard error might be of
greater value, but the best information is obtained from the
relative standard errors. As it is hardly possible to compute
this quantity for all pairs in the network (n stations give
n (n - 1) possible combinations) this investigation is generally
2
carried out for some typical groups of pairs, viz

(1) for pairs of stations located in that
part of the network which can be considered
as representative for the network as a
whole

(ii) for pairs of stations situated in that part
of the network where a weaker configuration'
can give rise to suspicions concerning
error accumulation. An example is two
adjacent stations without directly connecting
measurements

(ii1) for pairs of stations located on outer
boundaries of the network

(iv) for a number of diagonals across the
whole network
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In each group the relative standard error for approximately
five station pairs should be computed.

The version of TRUT when observation equations are fed in has
been applied inter alia to the computation of levelling net-
works, gravity networks, of astronomical longitudes and to a
simultaneous test adjustment of terrestrial and satellite
triangulation network.
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List of parameters

No Value
Y2 5 4 S§¢e 29 '.‘
) 371 -2-68
T ) f Scale factor minus one, in ppm
1693 3-16
J
3 L8l 77
26 1+ 3
Orientation parameter,
in centesimal seconds
!
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