# Processing of the NKG 2003 GPS Campaign

L.Jivall (1), M.Lidberg(1,2), T.Nørbech (3), M. Weber (4)

(1) Lantmäteriet (National Land Survey), Gävle, Sweden, lotti.jivall@lm.se

(2) Chalmers University of Technology, Onsala Space Observatory, Sweden, martin.lidberg@lm.se

(3) Norwegian Mapping Authority, Hønnefoss, Norway, torbjorn.norbech@statkart.no

(4) Kort og Matrikel Styrelsen, (National Survey and Cadastre), Copenhagen, Denmark, mmw@kms.dk

#### 1. Abstract

The NKG 2003 GPS campaign was carried out from September 28th to October 4th, 2003 as a co-operation between members of NKG and the Baltic Countries. The aim of the campaign is, according to resolution No 3 of the 14<sup>th</sup> General Meeting of NKG, the development of a unified ETRS 89 reference frame on the cm level for the Nordic area and of formulas for transformation from such a reference frame to the national realizations of ETRS 89, as well as the transformation from ITRF to the unified ETRS 89 reference frame."

The campaign was processed by four analysis centres, using three different softwares:

- NMA, Torbjørn Nørbech, GIPSY/OASIS II
- OSO, Martin Lidberg, GAMIT/GLOBK
- LMV, Lotti Jivall, Bernese version 5.0
- KMS, Mette Weber /Henrik Rønnest, Bernese version 4.2

This paper presents the campaign and the processing of it. The four individual solutions and the comparison and combination of them are presented. Problems in the data analysis and differences between the solutions are discussed. The final coordinates from the campaign are in ITRF 2000 epoch 2003.75.

#### 2. Introduction

The Nordic countries have implemented national realizations of ETRS 89. Depending on when the realizations were made and on which ITRF the realizations are based, there are differences between the realizations up to a few cm [Jivall, Lidberg 2000]. The national realizations have already been introduced to the users and will not be replaced. There are however situations were a common reference frame could be useful, e.g. for the Nordic Position Service which is under development. A common reference frame could also act as a link for transformations between the different national realizations and between the realizations and ITRF.

The full documentation of the processing part is found in [Jivall et al 2005].

#### 3. The campaign

GPS observations for the NKG 2003 GPS campaign were carried out from September 28th to October 4th, 2003 (day 271 to 277, GPS-week 1238). The observation campaign was co-ordinated by Finn Bo Madsen at KMS, Denmark.

Stations from Denmark, Estonia, Finland, Greenland, Iceland, Latvia, Lithuania, Norway and Sweden – finally 133 stations – participated in the campaign – see figure 1 and 2.

Table 1 contains names, sorted by country, for all the observing locations. All stations are permanent except some defining ETRS 89 stations in Denmark, Latvia and Lithuania. Non-permanent stations have been written under a line.

The Lithuanian observers noticed problems with one of their stations (L311). To be sure to have this station included in the resulting coordinate set from the campaign, this station was observed for 5 extra days (292-296), ten days after the campaign together with the Lithuanian stations VLNS and KLPD.

Data were transferred to an ftp-server at KMS, Denmark, where they were checked and corrected in the preprocessing carried out by Henrik Rønnest, KMS.



Figure 1: Stations in the Nordic-Baltic part of the NKG 2003 campaign.



Figure 2: Stations in the Atlantic part of the NKG 2003 campaign.

| Table 1:<br>Campaign | Stations i      | included in | the N | KG 200. | 3 GPS |  |
|----------------------|-----------------|-------------|-------|---------|-------|--|
| Denmark              | TUOR            |             | PRES  | FROV    | OSTE  |  |
| BUDP                 | VIRO            | L311        | SAND  | GAVL    | OVAL  |  |
| SMID                 | VAAS            | L312        | SIRE  | HALE    | OVER  |  |
| SULD                 |                 | L408        | SKOL  | HALV    | OXEL  |  |
|                      | Greenland       | L409        | SOHR  | HARA    | RORO  |  |
| BORR                 | QAQ1            |             | STAS  | HASS    | SKAN  |  |
| BUDD                 | UDD SCOB Norway |             | TGDE  | HILL    | SKE0  |  |
| HVIG                 | HVIG THU3       |             | TONS  | JONK    | SKIL  |  |

| BODD    | SCOB      | Norway | IGDE   | нттт | SKEU |
|---------|-----------|--------|--------|------|------|
| HVIG    | THU3      | AKRA   | TONS   | JONK | SKIL |
| MYGD    |           | ALES   | TRDS   | KALL | SMOG |
| STAG    | Iceland   | ANDE   | TRMS   | KARL | SMYG |
| TYVH    | AKUR      | ANDO   | TR01   | KIR0 | SODE |
| VAEG    | HOFN      | ARNE   | TROM   | KIRU | SPT0 |
|         | REYK      | BODS   | TRYS   | KNAR | STAV |
| Estonia |           | BRGS   | ULEF   | LEKS | SUND |
| SUUR    | Latvia    | DAGS   | VARS   | LJUN | SVEG |
|         | IRBE      | DOMS   |        | LODD | UMEA |
| Finland | RIGA      | HALD   | Sweden | LOVO | UPPS |
| JOEN    |           | HONE   | ALMU   | MAR6 | VANE |
| KEVO    | ARAJ      | KONG   | ARHO   | MARI | VAST |
| KIVE    | INDR      | KRSS   | ARJE   | MJOL | VIL0 |
| KUUS    | KANG      | LYSE   | ASAK   | NORB | VIS0 |
| METS    | RI00      | NALS   | ATRA   | NORR | VOLL |
| OLKI    |           | NYA1   | BIE_   | NYHA | ZINK |
| OULU    | Lithuania | NYAL   | BJOR   | NYNA |      |
| ROMU    | KLPD      | OSLS   | FALK   | ONSA |      |
| SODA    | VINC      | PORT   | FBER   | OSKA |      |

#### 4. Strategy for Processing

We decided to process the GPS campaign using the different software packages available within the group. These are:

- the Bernese GPS processing software
- GIPSY/OASIS II
- GAMIT/GLOBK

As a general philosophy for computing a GPS campaign using different software packages, we have concluded that each software package should be used together with the recommended settings for the respective software. Using this approach we will be able to check for possible differences in the result not only depending on the programs used, but also due to differences in processing strategy.

No attempt is therefore done to fully harmonise the processing strategy. We have rather tried to document how the programs are commonly used and if possible explain and compare differences.

Just for a few (but important) parameters, common recommendations were set:

• elevation cut-off =  $10^{\circ}$ 

- elevation dependent weighting of the observations
- ocean tide loading corrections using the FES 99 model (values from Onsala provided for the stations in the campaign)
- no atmospheric loading correction.

The campaign was processed by four analysis centres, using three different softwares:

- NMA, Torbjørn Nørbech, GIPSY/OASIS II
- OSO, Martin Lidberg, GAMIT/GLOBK
- LMV, Lotti Jivall, Bernese version 5.0
- KMS, Mette Weber /Henrik Rønnest, Bernese version 4.2

The processing was co-ordinated by Lotti Jivall at LMV.

The four analysis centres processed preliminary solutions during 2004 and by the end of the year the solutions were compared and some problems were identified. Final solutions were processed in the beginning of 2005, which during the spring were combined to a final solution of the campaign.

#### 5. NMA, GIPSY/OASIS II

Truong-An Phong processed a preliminary solution of Norway and Sweden under supervision of Torbjørn Nørbech in the beginning of 2004.

Torbjørn Nørbech carried out a new preliminary solution of all 133 stations during November 2004.

A final solution was carried out February 2005.

#### 5.1 Characteristics of the processing

- Fiducial free Precise Point Positioning solution for all 133 stations, 5 min. epoch interval.
- JPL satellite clock corrections (yyyy-mmdd\_nf.tdp and yyyy-mm-dd\_nf.tdpc), orbits (yyyy-mm-dd\_nf.eci) and earth orientation parameters (yyyy-mm-ddtpeo\_nf.nml).
- Local tie information is taken from RINEX file header
- Antenna type information is taken from RINEX file header
- Antenna characteristics information from the antenna file ant\_info.003, including both IGS and NGS models. Mainly IGS-models but NGSmodels for ASH700228D, ASH700936A\_M (=B\_M, D\_M, E), ASH701008.01B, ASH701073.1, ASH701933B\_M,

ASH701945B\_M (=C\_M), ASH701945E\_M, TRM22020.00+GP and TRM29659.00).

- Ocean loading coefficients from
  <u>http://www.oso.chalmers.se/~loading/</u>
- Float,L3 solution (no ambiguity resolution)
- 10 deg elevation cut-off
- The fiducial free solutions are then transformed with so called JPL products X-files (yymmmdd.itrf00.x) to ITRF2000. The X-files contain 7 parameters parameters for a Helmert transformation. The parameters are determined daily by JPL from a global fit on 65-70 IGS stations. So this is a global connection to ITRF2000.
- Finally the daily transformed solutions are combined to a weekly solution/solution for the campaign. This combination is performed as a least square adjustment of the daily transformed PPP solutions weighted by their corresponding co-variance information.
- The additional observations in Lithuania (L311, VLNS and KLPD, day 292-296) have also been included in the processing.

#### 5.2 Results

The internal estimated standard deviations (from the covariance matrix of the least square adjustment) on the combined solution of seven days are:

Sx: max 1.7 mm, min 0.5 mm, average of 0.6 mm

Sy: max 1.8 mm, min 0.4 mm, average of 0.5 mm

Sz: max 2.9 mm, min 0.7 mm, average of 1.0 mm

#### 5.3 Problems

Some modifications of the RINEX files where necessary because GIPSY is not quite RINEX compatible.

The variations of the local tie vectors at the stations L311, L312, L408, and L409 are compensated for.

The radome codes NONE, OSOD DUTD and SCIS are neglected.

Problems with processing of the Swedish stations

GAVL/273, NYHA/271, OSKA/271, OVAL/271, SKIL/271, SODE/271, UMEA/271, VAST/271, ZINK/274.

According to SWEPOS operational centre all doy 271 RINEX files have been manually edited, due to some problems. No explanation found for the stations GAVL/273 and ZINK/274 except that the ZINK/274 had "large position change" in the s-file.

The problem was however overcome by using the program "clockprep" in the GIPSY software package to identify problems and then do manual deleting of some data. We discovered no regular pattern, but did some data deleting until GIPSY was running properly.

We have to emphasize that this manual editing is only done on one of seven days for the actual stations. The total amount of data was not dramatically reduces, except for the station ZINK/274 which was reduced by 60%.

### 6. OSO, GAMIT/GLOBK

Martin Lidberg processed the campaign during the summer 2004. Some antenna model errors were found, which were corrected in a new preliminary solution delivered in November 2004. The final solution was processed and delivered in February 2005, where incorrect handled horizontal GPS antenna eccentricities have been corrected.

#### 6.1 Characteristics of the processing

- GPS observations (RINEX data) are processed using GAMIT (version 10.1) up to so called "quasi-observations" including relative station position, satellite orbits and their co-variances.
- Network solution divided into 7 sub-networks with many common stations. Additional EPN and IGS stations added to the network.
- Double differences
- Ambiguity resolution
- 10° elevation cut off
- Saastamoinen a priori troposphere model
- troposphere zenith delay parameters estimated every 2nd hour (piece-wise-linear)
- daily gradient parameters estimated
- the Niell 1996 mapping function
- a priori orbits from SOPAC
- Solving for orbit corrections
- "Quasi observations" from the 7 sub networks of the stations in the current campaign processed using GAMIT are combined with "quasi observations" of global/regional networks of IGS stations (from SCRIPPS) are combined using GLOBK.
- The connection to ITRF2000 is done in the combination (stabilization) with the global quasi observations. 39 "good" IGS stations globally distributed are constrained to IERS ITRF2000 when solving for daily Helmert parameters (3 translations, 3 rotations and a scale). This is a global connection to ITRF.

• IGS antenna models except for the antenna types ASH701008.01B, ASH701073.1, ASH701945C\_M, and ASH 701945E\_M, where NGS models have been used. For the site L312 the IGS antenna model ASH700228 NOTCH has been used.

#### 6.2 Results, problems e.t.c.

Position standard errors are computed from the daily

differences as 
$$s = \sqrt{(1/n) \cdot \left\{ \sum v^2 / (n-1) \right\}}$$
.

The standard errors are usually below 1 mm in north and east components, and below 2 mm in the vertical component. Exceptions are DOMS (e 1.5 mm), IRBE (u 4 mm), KONG (n & e 1.5 mm), L311, L312, L409 (u 4 mm) and QAQ1 (u 3mm).

The success rate of the resolved ambiguities are not presented in the result reports from GAMIT10.1, so it is not known if the fixed solutions really are fixed solutions, some baselines might be mainly (closer to) float solutions.

In the results of the GAMIT processing, the stations BRGS, HALD, KONG and SAND get phase observation residuals exceeding 10 mm which are above the usually considered acceptable level.

For the station BRGS, the daily repeatability is satisfactory in this solution. However, the east component may get bad repeatability depending on GPS processing strategy and choice of stations included in the GAMIT computation. Therefore, there are indications of possible problems in the GPS data collection at the station BRGS.

#### 7. LMV, Bernese ver 5.0

A preliminary processing was carried out during November 2004 using version 5.0 of the Bernese Software by Lotti Jivall. Some improvements concerning exclusion of stations and replacement of the BRGS fixed solution with a float solution was carried out in February 2005.

#### 7.1 Characteristics of the processing

- Final solution just containing GPS week 1238 (day 271-277).
- Network solution, full network 133 stations
- Double differences, baselines formed with OBSMAX strategy (maximizing the number of observations)
- ambiguity fixing (QIF)
- Orbits, EOPs and Satellite clocks from IGS
- P1-P2 and P1-C1 code biases from CODE
- Global ionosphere model from CODE

- Ocean tide loading FES 99 from Onsala
- Relative antenna models from IGS + NGS model for antenna ASH701008.01B.
- Saastamoinen apriori troposphere model (hydrostatic part) with dry Niell 1996 mapping function
- Estimating ZTD using wet Niell 1996 mapping function (2 h interval)
- Horizontal gradient parameters: tilting (24 h interval)
- 10 deg cut off, elevation dependent weighting
- Data files shorter than 12 hours were rejected
- ITRF coordinates from IGS cumulative solution (up to week 1294) used for connection to ITRF, which was done through minimum constrained adjustment with no translation condition. This is a regional constraint to ITRF.
- (Alternative connection to the EPN based ITRF was also performed)

#### 7.2 Results, problems e.t.c.

#### 7.2.1 Quality of daily solutions

The daily solutions of the full network were of good quality, rms = 1-1.1 mm, average rate of resolved ambiguities per day vary between 86% and 89%. The worst individual ambiguity resolution was the baseline HOFN-SCOB with 65% resolved ambiguities day 277.

The following observations were rejected because of less than 12 hours with good observations per day: MYGD day 271, IRBE, SKOL and VLNS day 272 and finally SKOL day 273. UMEA had problems with the single point positioning (determination of receiver clock correction) day 271 and was also rejected. (The same problem as was found with GIPSY/OASIS II. It should be noted that UMEA did not show any problems that day in the ordinary SWEPOS processing, which is performed with the Bernese version 4.2.)

The daily repeatability expressed in rms values are up to 2-3 mm for the north component, up to 1 mm for the east component (except for station BRGS which had an rms of 3 mm) and up to 6 mm for the up component (except for L311, L312, L409 and QAQ1 which had rms of 11-13 mm in the up-component. L311 and L409 were excluded day 273 and QAQ1 day 271 reducing the rms values to 5-7 mm for these stations.

#### 7.2.2 Comparison between fixed and float solution

The combined float and fixed solutions were compared to each other to see if there were any possible erroneous fixed solutions. The differences are normally below 5 mm in the horizontal components, but BRGS is an outlier with 23 mm difference in the east component. The float solution of BRGS has a better agreement with the GIPSY and GAMIT solutions as well as with the long time series (5 years) of GAMIT solutions processed by Martin Lidberg. The float solution for BRGS was considered to be more reliable. Float solutions are in general noisier than fixed solutions. For this network the average rms values of the 7 days were 1, 1, 3 mm (north, east and up) for the fixed solution and 2, 3, 12 mm for the float solution. This means that just use the combined float solution (for all stations) because of the problems with BRGS is not a very good idea. We decided just to replace the fixed solution of BRGS by the float solution at this station after a Helmert fit to the 5 closest stations (ALES, DOMS, DAGS, PRES and AKRA).

#### 7.2.3 Elevation cut-off test

An elevation cut-off test was performed by comparing the final 10°-solution with a 25°-test solution. This test indicates that the station ANDO is less accurate in height, which might be caused by the used antenna model (AOAD/M\_T) not perfectly modelling the antenna and its environment at this station. Also the stations ARNE, SPTO, ARAJ, KONG, DOMS, NYA1, KUUS and L312 and have somewhat larger differences between the two solutions than normal.

#### 7.3 Connection to ITRF2000

The connection of the final solution of LMV was made using the IGS cumulative solution. The cumulative solution up to GPS week 1294 was used, i.e. the latest solution available when the processing was carried out. This was chosen to get the best velocities for the calculation of the coordinates at epoch of the campaign.

Eleven stations from the campaign are included in the cumulative IGS solution of week 1294. Two of them are twin stations, TROM/TRO1 and NYAL/NYA1 so just one for each site was chosen for the constraint (TROM and NYAL). REYK and QAQ1 were also excluded from the constraint as they did not fit so well.

The final LMV solution is a combined minimum constraint solution of the seven days with no translation condition to the seven remaining IGS stations (METS ONSA KIRU TROM THU3 NYAL HOFN).

The rms in the Helmert fittings were 3.1 and 1.5 mm for the 3-parameter fit and the 6-parameterfit respectively on the seven IGS-stations. The improvement with 6 parameters show that there are some tilt in the GPSsolution which probably depends on systematic effects in un-modelled errors. As a test the GPS solution was also fitted an EPN based ITRF for the Nordic-Baltic part. This coordinate set was achieved by using five weekly EPN-solution centred on GPS-week 1238 (GPS-week 1236-1240) and constraining 9 IGS stations to their IERS ITRF2000 epoch 2003.75 coordinates. (Similar approach used for the Swedish ETRS 89 realization.) This fit resulted in an rms of 1.8 mm and 1.5 mm for the 3-parameter and 6-parameter fit respectively.

The two different ITRF connections (IGS cumulative solution and the "EPN based" ITRF, respectively) have a systematic difference of 0, 1 and 5 mm for the north, east and up-component respectively.

#### 7.4 Additional Lithuanian data

As mentioned in section 3, extra measurements were performed at the Lithuanian station L311.

First, it could be noted that when processing the original campaign, the station L311 turned out to be of the same quality as the other Lithuanian stations (though some data were missing for the first days).

To further check the station L311, the extra observations were processed and compared to the campaign solution. In this processing the EPN stations RIGA and VISO were added. The differences to the combined solution of the campaign (the LMV solution) are found in table 2. Both a direct comparison between the additional data and the LMV solution and a comparison of the LMV solution with and without the additional data (i.e. the corrections to the LMV solution if the additional data were added to the solution) are presented.

The differences between the campaign solution and the combined solution of the campaign and extra data were below 1 mm in the horizontal and 2 mm in the vertical component at the station L311. This comparison shows that we could be confident with the coordinates for L311 of the original campaign.

Table 2: Differences at L311. The left column contains the differences between the additional data and the LMV solution. The right column contains the differences between the LMV solution with and without the additional data

|        | extra-<br>gw1238 | gw1238+extra-<br>gw1238 |
|--------|------------------|-------------------------|
| N (mm) | 0.6              | 0.3                     |
| E (mm) | 0.7              | 0.4                     |
| U (mm) | 5.9              | 1.5                     |

#### 8. KMS, Bernese ver 4.2

#### 8.1 Preliminary processing and re-processing

A first preliminary processing was carried out by Henrik Rønnest during the spring 2004 using the Bernese version 4.2. The network was processed in two parts, one Nordic-Baltic part and one Atlantic part (Greenland, Iceland and Svalbard).

Henrik's solution for the Nordic-Baltic part was delivered in summer 2004. Lotti Jivall noticed problems with some antenna models and the coordinates used for the constraint. This was further investigated by Mette Weber. Seven antenna models were wrong affecting 33 stations and 47 baselines in the Nordic-Baltic part. Mette did a reprocessing of the Nordic-Baltic part. As the time was short, the re-processing was just carried out for the affected baselines and just from the ambiguity resolution step.

In the Atlantic part of the network there were no problems with the antenna models and the solution estimated by Henrik during spring 2004 was combined with the reprocessed solution for the Nordic-Baltic part forming a solution for the whole network. This solution was determined in January 2005.

#### 8.2 Characteristics of the processing

- Network solution in six clusters; four clusters in the Nordic-Baltic part and two clusters in the Atlantic part (clusters connected with one baseline)
- Double differences, baselines formed to get the shortest distances. The same baseline definition for all days.
- Ambiguity fixing (QIF)
- Orbits, EOP's and Satellite clocks from IGS
- Calculated own regional ionosphere model (used for ambiguity resolution)
- Ocean tide loading FES 99 from Onsala
- Relative antenna models from IGS + NGS model antennas not present in the IGS-file.
- No a priori troposphere model
- Estimating ZTD using dry Niell 1996 mapping function
- 10 deg cut off, elevation dependent weighting
- ITRF coordinates from IGS cumulative solution (up to week 1294) used for connection to ITRF

#### 8.3 Network solution in clusters

The network was divided into six clusters A to F due to the capacity of the machine. The Nordic-Baltic part consists of cluster A to D, and the Atlantic part consists of cluster E and F. In principle the entire network was formed in a first step and afterwards divided into clusters. Therefore there will only be one baseline connecting the clusters. The network configuration is the same for each day.

During the processing one station in each cluster was constrained: BUDP (A), OSLS (B), SKE0 (C), METS (D), HOFN (E) and NYAL (F). The normal equations for each day were formed by combining the normal equations from all clusters as shown in figure 3.



Figure 3: Combination of normal equations from each cluster, KMS solution.

In each 1-day NEQ these 6 stations were constrained. In the last step when forming the 7-day solution for the entire network selected IGS stations were constrained. This last step was not performed by KMS as explained in the next section.

#### 8.4 Processing problems

Some stations had to be rejected for some sessions due to bad data quality or missing data. The following stations and sessions were rejected during the preliminary processing:

- RINEX-files from directory "ready" at the KMS ftp, INDR day 274 and 276 (Lotti had the same problem first but solved it by deleting a wrong "extra site info" and the observations before that)
- L312, L408, L409 day 273, missing observations
- GAVI day 276, problems with the triple difference solution
- SODE day 274, problems with the triple difference solution
- VLNS day 273, connecting baseline missing
- SKIL day 271, problems with the triple difference solution
- L311 day 271, missing observations

• QAQ1 day 271, excluded from 1-day NEQ due to high repeatability

During the re-processing the wrong antenna models were corrected. The corrections were in the order of 1-2 cm for the antenna phase centre offsets for L1 and L2. These corrections resulted in a change in the coordinates of 2-4 cm in X and Y and 8 cm in Z for the affected stations. Therefore the a priori coordinates were updated for these stations before the re-processing from the ambiguity resolution step.

The constrained coordinates in the preliminary solution were wrong. During re-processing the correct coordinates were introduced in the final step with ADDNEQ as fixed coordinates. In Bernese version 4.2 it is not possible to produce a constrained solution at a new set of coordinates with ADDNEQ. The correct coordinates have to be introduced at the beginning of the processing, which was not possible because the re-processing was only performed from the ambiguity resolution step and only for some baselines. In Bernese version 5.0 it is possible to introduce new constrained coordinates in the final step with ADDNEQ and therefore KMS provided Lotti with the 1day NEQ-files from the KMS solution and she performed the last step of the KMS solution.

#### 8.5 Connection to ITRF2000

The connection to ITRF2000 was done as a minimum constrained solution of the KMS NEQ-files in the same way as for the LMV solution, using Bernese version 5.0.

#### 8.6 Results

The results were evaluated in terms of the ambiguity resolution and the rms of repeatability. The average ambiguity resolution for all baselines and all days is 66%.

The ambiguity resolution for most of the baselines is rather low; 31 baselines (i.e. 23%) have a resolution less than 60% and only 12 baselines (i.e. 9%) have a resolution of 80% or more. Generally the long baselines in the Atlantic part have the lowest ambiguity resolution of less than 50%.

Compared to the Bernese ver. 5.0 solution from LMV, KMS has a lower ambiguity resolution. Lotti and Mette made a few comparisons of some parameter settings in MAUPRP and the differences in these settings can maybe explain some of the differences in ambiguity resolution (generally more ambiguities are set up in the KMS solution, but more ambiguities are not resolved). Nevertheless, the LMV and the KMS solution seem to agree well.

The daily repeatability expressed in rms values are up to 2-3 mm for both the north and east components and up to 9 mm for the up component.

# 9. Comparison of the solutions from the four different analysis centres

#### 9.1 Direct comparison of the solutions

The ITRF2000 coordinates from the different analysis centres were compared to each other. As mentioned before we have problems (related to ambiguity fixing) with the east component of the station BRGS. In the LMV solution BRGS was replaced by a float solution, since the difference between fixed and float solution was too big (23 mm in the east component) and the float solution was considered to be more reliable. In the comparison of fixed and float solutions in the KMS solution, the problems with BRGS were not so clear so the station was kept in a first comparison. It turned out that the KMS solution of BRGS differed c:a 20 mm in the east component, so BRGS was excluded from the KMS solution in the further comparisons and combinations.

The solutions agree for most stations within  $\pm 3$  mm in the horizontal components and within  $\pm 10$  mm for the vertical. RMS values computed on all the differences in north, east and up are 1.4, 1.5 and 4.7 mm respectively. There are however shifts between the solutions, e.g. OSO is c:a 2-3 mm south-east of the other solutions and LMV and KMS are c:a 5-10 mm below OSO and NMA. The reason for the shifts is that the connection to ITRF has been done in different ways. The OSO and NMA solutions are both global connections to ITRF while the LMV and KMS solutions are regional. Another difference is that the OSO and NMA solutions are aligned to ITRF2000 by solving for 7 parameters and the LMV and KMS solutions are aligned just with a translation.

#### 9.2 Harmonizing the solutions

In order to better detect outliers and get an impression of the internal consistency between the solutions, we decided to harmonize/align the solutions to each other or a common coordinate set.

First all four solutions where fitted to two IGS realizations of ITRF 2000 with different number of parameters. The IGS-realizations of ITRF2000 where the weekly IGS-solution (GPS-week 1238) and the cumulative IGS-solution containing solutions up to GPS-week 1294. (Both solutions are connected to IERS ITRF2000 and not IGS 2000.)

It could be noted that the RMS for the fits with 7 parameters are on the same level for all four solutions (sigma 1.5 - 2.8 mm). The fits of the KMS and LMV solutions are improved quite a lot when a scale and rotations are solved for. The KMS and LMV scales are c:a 2 ppb. The improvement is not so large for the NMA and OSO solutions, since they already estimated these parameters, though on a daily basis.

The four solutions of the Nordic campaign were also fitted to each other with 7-parameter transformations. The two Bernese solutions (KMS and LMV) do of course agree best with each other (sigma 1.8 mm), but the agreement between KMS/LMV and OSO is not much worse (sigma 2.1 mm). The RMS for the fits between KMS/LMV and NMA is a little bit higher (sigma 3.5-3.7 mm, but still nothing to worry about). NMA has its best agreement with OSO (sigma 2.6 mm).

Regarding the translations between the solutions, LMV and NMA differ c:a 1 cm in height . KMS and OSO are in the middle. The OSO solution differs c:a 2 mm in the north component and a little bit less for the east component in comparison to the other solutions.

We decided to let the two global solutions (OSO and NMA) decide the connection to ITRF2000, as there are so many open questions concerning the regional connection of the two Bernese solutions (LMV and KMS).

An average of the OSO and NMA coordinates was calculated for each station (and component). All four solutions were then transformed to this averaged coordinate set with a 7-parameter transformation see figure 4.



Figure 4: Harmonization of the solutions.

#### 9.3 Comparison after harmonization

The four solutions transformed to the averaged NMA/OSO solution were compared to each other. Residuals from mean are presented in appendix A.

The differences are after this harmonization generally very small and the systematic effects seen before have (almost) disappeared. (Some small systematic effects in height are left.) The RMS values of all differences in each component are 0.9, 1.2 and 2.5 mm (north, east and up), which should be compared to the corresponding values before harmonization (1.4, 1.5 and 4.7 mm). Especially in height there is a large improvement. Just 7%, 17% and 11% of the stations have residuals larger than 2 mm in the north, 2 mm in east and 5 mm in up, respectively.

In table 3 residuals larger than 3 mm in north and east and 6 mm in up are presented. The limits are just chosen to get a reasonable number of residuals to present. Even the largest residuals are not really much to bother about. We think that we have been able to correct/handle the real outliers, which were found when the preliminary solutions from November 2004 were compared.

The NMA solution has the largest noise and thus most of the "large" residuals. The Lithuanian stations L311 and L312 have the largest residuals in height. These stations have a quite bad repeatability in the individual solutions and e.g. in the Bernese solutions one day was excluded for L311, which might explain why we get discrepancies between the different solutions. Other differences are that different antenna models have been used for the ASH700228D antenna at L312 and that the NMA solution contains also the additional data for L311 (but according to section 7.4 the impact of these extra data is negligible).

Table 3: The largest residuals between the harmonized solutions.

| 0.11     | 0. <i>i</i> | Residual |
|----------|-------------|----------|
| Sol/comp | Station     | (mm)     |
| NMA-N    | L312        | 5,3      |
| NMA-N    | AKUR        | -3,7     |
| NMA-E    | DOMS        | 5,2      |
| LMV-E    | KONG        | 4        |
| KMS-E    | KONG        | 3,9      |
| NMA-E    | SUUR        | 3,2      |
| NMA-E    | OVER        | 3,1      |
| OSO-E    | KRSS        | -3,1     |
| NMA-U    | L312        | -15,5    |
| LMV-U    | L312        | 11,4     |
| NMA-U    | L311        | -10,1    |
| NMA-U    | ARAJ        | -9,4     |
| NMA-U    | VIRO        | 9,3      |
| NMA-U    | QAQ1        | 9,1      |
| NMA-U    | RI00        | -8,7     |
| KMS-U    | NALS        | 8,4      |
| NMA-U    | JOEN        | 8,1      |
| KMS-U    | KONG        | -8       |
| KMS-U    | NYAL        | 7,9      |
| NMA-U    | KUUS        | 7,6      |
| KMS-U    | L312        | 7,5      |
| NMA-U    | KONG        | 6,9      |
| NMA-U    | ROMU        | 6,7      |
| LMV-U    | VIRO        | -6,4     |
| KMS-U    | ARAJ        | 6,4      |
| LMV-U    | KUUS        | -6,1     |
| KMS-U    | NYA1        | 6,1      |

#### **10.** Combined solution

The final combined solution of the NKG 2003 campaign is the average of the four harmonized solutions.

Using the harmonized solutions, instead of the original solutions, for an average is motivated by the fact that the agreement between the solutions is improved after harmonization. The Hemert-fits do also show that there are significant scales and rotations between the different solutions.

The choice of letting the NMA and OSO solutions define the connection to ITRF means further that we have a pure global connection to ITRF. If we should have used the Bernese solutions with regional connections as well, we would have got a mixture of global and a regional connection.

Final combined coordinates in ITRF2000 epoch 2003.75 are given both expressed as geocentric Cartesian coordinates and geodetic coordinates in appendix B.

The accuracy depends on the following components:

- Accuracy of the ITRF connection
- Systematic effects depending on un-modelled errors or wrong models
- Random errors, noise in the solutions

The accuracy of the ITRF connection could be estimated to a few mm in the horizontal components and 1 cm in height based on the direct comparison between the different solutions.

Neglected systematic effects, e.g. air pressure, might contribute to the relative uncertainty of maybe a few mm in the horizontal and half to one cm in the height component (left after the ITRF connection). Shortcomings in the used antenna models could add errors of up to a few cm. This type of error could mainly be expected for non choke ring antennas. In the performed elevation cut-off tests a few stations with possible antenna model problems were identified – see section 7.2.

The random errors in the solutions are reflected in the estimated standard errors/rms from repeatability of the four individual solutions see section 5-8 and in the comparison of the four harmonized solutions (see appendix A).

Considering the estimations in the error components above, an estimation of the real accuracy would be 0.5-1 cm in the horizontal components and 1-2 cm in the vertical on 95% level for the main part of the stations. ANDO, L311 and L312 might be less accurate in height.

#### **11.** Conclusion

Three completely different processing strategies and connections to ITRF were performed:

- Precise Point Positioning with JPL-products using GIPSY/OASISII
- Network solution with GAMIT combined with SCRIPPS global IGS-solutions for a global ITRF connection
- Network solution with the Bernese GPS software regionally connected to IGS cumulative solution (two solutions).

The resulting coordinates of the different strategies agree for most stations within a few mm horizontally and 1 cm vertically.

The internal differences are even smaller. After harmonization (transformation to the average of the GIPSY and GAMIT solution) rms of the differences are 0.9, 1.2 and 2.5 mm for north, east and up.

Also the two Bernese solutions differs in version of the program and strategy for e.g. baseline definitions and subdivision of the network, but the coordinates agree very well.

The processing in different softwares and at different analysis centres have given the final solution extra strength. Some errors were found in the comparison between the solutions and might not have been discovered if just one software at one centre had been used, e.g. bug affecting the computation of horizontal offsets, wrong antenna models and the problems with the fixed solution of the station BRGS. Comparison between fixed and floatsolutions and elevation cut-off tests are useful to check the individual solutions.

The processing has indicated problems on some permanent stations, e.g. BRGS and ANDO, which need to be further investigated.

The result from the NKG 2003 campaign will be used in the development of transformations between the national realizations and to ITRF and in combination with the Nordic height solution for check of gravimetric geoids.

The coordinate set is a snap shot of the stations epoch 2003.75, in fact a very good one. Many of the stations are permanent and are regularly processed by different organizations (but not all stations by the same organization), so a possibility to get more general coordinates would be to combine these solutions. In such a work the snap shot of the NKG 2003 campaign could be very useful for check the consistency between the different solutions.

#### References

Jivall L & Lidberg M (2000): SWEREF 99 – an updated EUREF realization for Sweden. EUREF, Symposium of the IAG Sub commission for Europe (EUREF), June 22-24 2000, EUREF Publication No. 9, 167-175, Tromsö, Norway.

Jivall et al 2005: Processing of the NKG 2003 GPS campaign. LMV-report 2005:7. National Land Survey of Sweden. <u>www.lantmateriet.se</u>.



## A. Comparison after harmonization

















# B. Final combined coordinates in ITRF2000 epoch 2003.75

| Station | Х            | Y            | Z            |    | La | atitude   |     | Lor | ngitude   | h        |
|---------|--------------|--------------|--------------|----|----|-----------|-----|-----|-----------|----------|
| AKRA    | 3254758.5874 | 295601.6128  | 5458918.8409 | 59 | 15 | 40.162546 | 5   | 11  | 21.997171 | 65.1172  |
| AKUR    | 2502918.5717 | -819166.9627 | 5789714.8936 | 65 | 41 | 7.527077  | -18 | 7   | 20.928177 | 134.1588 |
| ALES    | 2938027.3479 | 319096.3493  | 5633413.9555 | 62 | 28 | 34.980641 | 6   | 11  | 54.757201 | 189.8870 |
| ALMU    | 3051686.9263 | 995723.6848  | 5493062.9845 | 59 | 51 | 58.665284 | 18  | 4   | 14.865394 | 56.6094  |
| ANDE    | 2169480.9148 | 627616.8718  | 5944952.2349 | 69 | 19 | 33.806299 | 16  | 8   | 5.338510  | 44.2585  |
| ANDO    | 2175764.8320 | 624247.8976  | 5943414.8317 | 69 | 16 | 42.143599 | 16  | 0   | 31.303832 | 410.6163 |
| ARAJ    | 3277266.5876 | 1309685.8298 | 5295146.7568 | 56 | 29 | 36.592344 | 21  | 46  | 58.828475 | 208.5641 |
| ARHO    | 3033319.5435 | 1051907.2736 | 5492748.4149 | 59 | 51 | 39.296362 | 19  | 7   | 32.655022 | 40.8546  |
| ARJE    | 2441775.1562 | 799268.1815  | 5818729.3538 | 66 | 19 | 4.865846  | 18  | 7   | 29.513638 | 489.2236 |
| ARNE    | 3121952.5970 | 633902.4445  | 5507296.4802 | 60 | 7  | 10.456920 | 11  | 28  | 39.675335 | 196.6044 |
| ASAK    | 3286466.4641 | 723964.3668  | 5400051.7214 | 58 | 14 | 30.163506 | 12  | 25  | 23.080325 | 112.6673 |
| ATRA    | 3382554.0630 | 777774.8477  | 5333332.8494 | 57 | 7  | 13.633050 | 12  | 56  | 57.640053 | 165.3756 |
| BIE_    | 3154144.2738 | 917058.8568  | 5449043.1160 | 59 | 5  | 15.913277 | 16  | 12  | 41.923532 | 91.6453  |
| BJOR    | 3169460.3481 | 805521.4644  | 5457845.8620 | 59 | 14 | 25.049725 | 14  | 15  | 35.523083 | 199.4249 |
| BODS    | 2393811.6263 | 612747.7349  | 5860377.6599 | 67 | 16 | 30.158486 | 14  | 21  | 28.109270 | 50.8152  |
| BORR    | 3523674.9150 | 928375.9673  | 5217378.7300 | 55 | 14 | 57.216280 | 14  | 45  | 36.663776 | 158.9460 |
| BRGS    | 3155871.1642 | 290902.8634  | 5516573.5590 | 60 | 17 | 19.481129 | 5   | 15  | 59.563128 | 93.8190  |
| BUDD    | 3513649.3528 | 778954.7377  | 5248201.9529 | 55 | 44 | 19.926687 | 12  | 29  | 59.856187 | 87.9557  |
| BUDP    | 3513638.2818 | 778956.3810  | 5248216.4219 | 55 | 44 | 20.469399 | 12  | 30  | 0.085468  | 94.0294  |
| DAGS    | 3122524.3628 | 466764.2060  | 5524286.5581 | 60 | 25 | 0.590496  | 8   | 30  | 6.449291  | 845.3651 |
| DOMS    | 2957499.2597 | 474477.2292  | 5612998.1331 | 62 | 4  | 24.187291 | 9   | 6   | 51.853410 | 733.3466 |
| FALK    | 3278189.6828 | 790418.5431  | 5395964.7976 | 58 | 10 | 11.776130 | 13  | 33  | 21.915732 | 259.9188 |
| FBER    | 3408401.3181 | 755024.5572  | 5320097.1446 | 56 | 54 | 12.838713 | 12  | 29  | 25.399943 | 63.7055  |
| FROV    | 3132396.4978 | 860615.4634  | 5470596.9011 | 59 | 27 | 59.749437 | 15  | 21  | 45.919430 | 83.0049  |
| GAVL    | 2993586.6966 | 922761.7340  | 5537295.8504 | 60 | 40 | 0.409089  | 17  | 7   | 54.176227 | 55.3864  |
| HALD    | 3216858.5498 | 647832.1092  | 5450991.3868 | 59 | 7  | 20.131135 | 11  | 23  | 10.683985 | 62.0599  |
| HALE    | 3115217.6604 | 806835.8348  | 5488628.1283 | 59 | 47 | 3.675953  | 14  | 31  | 13.583395 | 234.5759 |
| HALV    | 3456798.7196 | 906264.1963  | 5265352.9450 | 56 | 0  | 49.187975 | 14  | 41  | 25.945657 | 72.5524  |
| HARA    | 3414100.0473 | 880514.9557  | 5297435.7386 | 56 | 31 | 50.548889 | 14  | 27  | 42.293419 | 211.8560 |
| HASS    | 3464655.5746 | 845750.1366  | 5270271.6918 | 56 | 5  | 31.982963 | 13  | 43  | 5.076671  | 114.0576 |
| HILL    | 3351528.4856 | 828634.3617  | 5345223.3891 | 57 | 19 | 1.178683  | 13  | 53  | 14.468955 | 212.4473 |
| HOFN    | 2679689.9926 | -727951.2438 | 5722789.2884 | 64 | 16 | 2.250331  | -15 | 11  | 52.515360 | 82.6959  |
| HONE    | 3132537.3405 | 566401.9816  | 5508615.1977 | 60 | 8  | 36.869260 | 10  | 14  | 56.617715 | 181.4228 |
| HVIG    | 3523228.6414 | 502878.8676  | 5275213.1004 | 56 | 10 | 21.095560 | 8   | 7   | 23.151878 | 63.7218  |
| INDR    | 3177703.5301 | 1662050.1151 | 5257080.3777 | 55 | 52 | 44.782764 | 27  | 36  | 40.107893 | 213.6405 |
| IRBE    | 3183612.0641 | 1276706.6593 | 5359310.8632 | 57 | 33 | 15.905960 | 21  | 51  | 7.193165  | 40.6878  |
| JOEN    | 2564139.1129 | 1486149.7560 | 5628951.4318 | 62 | 23 | 28.223771 | 30  | 5   | 46.169334 | 113.7375 |
| JONK    | 3309991.5798 | 828932.2615  | 5370882.4564 | 57 | 44 | 43.705214 | 14  | 3   | 34.593751 | 260.4011 |
| KALL    | 3237443.3561 | 758888.5786  | 5424620.9530 | 58 | 39 | 49.062907 | 13  | 11  | 33.010548 | 90.0978  |
| KANG    | 3078174.9738 | 1608797.7677 | 5331767.6517 | 57 | 5  | 40.540959 | 27  | 35  | 37.200148 | 163.8297 |
| KARL    | 3160763.0950 | 759160.3153  | 5469345.6926 | 59 | 26 | 38.476035 | 13  | 30  | 20.252058 | 114.3253 |
| KEVO    | 1972158.1932 | 1005174.4726 | 5961798.7967 | 69 | 45 | 21.202191 | 27  | 0   | 25.711923 | 135.9368 |
| KIR0    | 2248123.2150 | 865686.6698  | 5886425.7662 | 67 | 52 | 39.272419 | 21  | 3   | 36.863379 | 498.0413 |
| KIRU    | 2251420.8155 | 862817.2074  | 5885476.6924 | 67 | 51 | 26.465067 | 20  | 58  | 6.408414  | 390.9694 |
| KIVE    | 2632277.1946 | 1266957.4282 | 5651027.7075 | 62 | 49 | 11.544469 | 25  | 42  | 8.141467  | 216.3162 |
| KLPD    | 3359228.1678 | 1297490.4662 | 5246690.3389 | 55 | 42 | 55.278148 | 21  | 7   | 7.983582  | 42.7483  |

| KNAR   | 3431762 5836 | 812400 2727                | 5296793 0496 | 56       | 31       | 17 664428 | 13  | 19       | 6 366517  | 113 9577 |
|--------|--------------|----------------------------|--------------|----------|----------|-----------|-----|----------|-----------|----------|
| KONG   | 3183811 0452 | 541144 0038                | 5481926.0674 | 59       | 30       | 54 535417 | a   | 38       | 46 484938 | 227 1250 |
| KRSS   | 3348185 8605 | 465041 0271                | 5390738 2783 | 58       | 4        | 57 701015 | 7   | 54       | 26 705108 | 147 7625 |
| KIIIIS | 2282711 4838 | 1267071 8685               | 5800215 8486 | 65       | -<br>5/  | 36 805566 | 20  | 2        | 0.524665  | 370 0288 |
| 1311   | 3376643 0337 | 1352760 06/1               | 5221718 8865 | 55       | 10       | 6 7/5000  | 23  | 2<br>10  | 56 307880 | 02 5080  |
| 1212   | 2220254 0214 | 1532709.9041               | 5107159 2262 | 55       | 55       | 51 207015 | 21  | 10       | 0 221052  | 220 5559 |
| 1409   | 3320234.0314 | 1452069 9199               | 5226111 2744 | 55       | 22       | 14 910057 | 20  | 19       | 14 269025 | 120 2002 |
| L400   | 2425967 9066 | 1400016 7101               | 5250111.2744 | 55       | 16       | 44.019907 | 20  | 42       | F0 270655 | 220 4200 |
|        | 3423007.0900 | 902045 9002                | 5154072.4761 | 04<br>60 | 10       | 19.525500 | 23  | 23       | 27 220420 | 479 4607 |
|        | 3022372.9212 | 002945.0092<br>942209 5075 | 5340004.1341 | 50       | 43<br>50 | 19.722079 | 14  | 52       | 17 744596 | 4/0.100/ |
|        | 3594252.5769 | 042390.3073                | 5310209.3208 | 50       | 30       | 0.000000  | 10  | 50       | 11.144000 | 190.3137 |
|        | 3304242.4443 | 000744.1073                | 5249954.9005 | 55       | 40       | 0.990000  | 12  | 09<br>40 | 44.090703 | 70 6679  |
|        | 3104219.1798 | 996364.1015                | 5463290.7027 | 59       | 20       | 10.009003 | 6   | 49       | 44.096099 | 19.0010  |
| LISE   | 3269683.9398 | 366420.5995                | 5446037.5801 | 59       | 1        | 50.428671 | 0   | 23       | 39.240264 | 287.7511 |
| MAR6   | 2998189.4392 | 931451.7616                | 5533398.6671 | 60       | 35       | 42.517043 | 17  | 15       | 30.693975 | 75.4408  |
| MARI   | 3121535.1963 | 967771.3826                | 5458911.7085 | 59       | 15       | 41.193561 | 17  | 13       | 30.125719 | 37.8463  |
| METS   | 2892570.8188 | 1311843.4328               | 5512634.1289 | 60       | 13       | 2.899021  | 24  | 23       | 43.151544 | 94.6198  |
| MJOL   | 3241110.5949 | 876032.9902                | 5404956.8641 | 58       | 19       | 29.257692 | 15  | 7        | 29.815966 | 159.8037 |
| MYGD   | 3379477.5810 | 598261.6074                | 5358170.5416 | 57       | 32       | 2.783052  | 10  | 2        | 20.186148 | 127.9848 |
| NALS   | 1202433.8622 | 252632.2796                | 6237772.5829 | 78       | 55       | 46.396648 | 11  | 51       | 55.111702 | 84.2328  |
| NORB   | 3068753.8376 | 875354.2331                | 5504108.8792 | 60       | 3        | 45.048255 | 15  | 55       | 14.391427 | 176.1418 |
| NORR   | 3199093.0510 | 932231.4694                | 5420322.6793 | 58       | 35       | 24.833333 | 16  | 14       | 46.977951 | 40.9732  |
| NYA1   | 1202433.8628 | 252632.2800                | 6237772.5863 | 78       | 55       | 46.396648 | 11  | 51       | 55.111747 | 84.2362  |
| NYAL   | 1202430.5512 | 252626.6990                | 6237767.6112 | 78       | 55       | 46.504705 | 11  | 51       | 54.309162 | 78.5111  |
| NYHA   | 3467557.7777 | 771271.7438                | 5279655.2769 | 56       | 14       | 39.356434 | 12  | 32       | 23.575306 | 63.1279  |
| NYNA   | 3141747.3916 | 1017435.9871               | 5438418.3499 | 58       | 54       | 10.706008 | 17  | 56       | 39.242533 | 66.0969  |
| OLKI   | 2863210.0008 | 1126271.5364               | 5568267.3953 | 61       | 14       | 22.757464 | 21  | 28       | 21.642601 | 30.6062  |
| ONSA   | 3370658.5718 | 711877.1220                | 5349786.9410 | 57       | 23       | 43.075111 | 11  | 55       | 31.861171 | 45.5824  |
| OSKA   | 3341339.9149 | 957912.4884                | 5330003.4077 | 57       | 3        | 56.300787 | 15  | 59       | 48.516623 | 149.7999 |
| OSLS   | 3169981.9028 | 579956.7555                | 5485936.6695 | 59       | 44       | 11.712092 | 10  | 22       | 3.925258  | 221.5422 |
| OSTE   | 2763885.2474 | 733247.4904                | 5682653.5420 | 63       | 26       | 34.057623 | 14  | 51       | 29.046746 | 490.0901 |
| OULU   | 2423778.4672 | 1176553.8338               | 5761861.0191 | 65       | 5        | 11.506317 | 25  | 53       | 34.535813 | 88.8576  |
| OVAL   | 3037697.4452 | 938862.3153                | 5510711.8425 | 60       | 10       | 58.642316 | 17  | 10       | 29.388550 | 81.8152  |
| OVER   | 2368884.7404 | 994492.3224                | 5818478.3665 | 66       | 19       | 4.290500  | 22  | 46       | 24.145532 | 222.9736 |
| OXEL   | 3177394.3820 | 977921.6621                | 5425008.4094 | 58       | 40       | 15.441066 | 17  | 6        | 25.352279 | 46.8192  |
| PORT   | 3267084.8120 | 542580.9987                | 5432706.2499 | 58       | 48       | 13.928207 | 9   | 25       | 45.600089 | 63.6883  |
| PRES   | 3227088.6670 | 353649.8215                | 5471909.9041 | 59       | 29       | 18.718022 | 6   | 15       | 14.282232 | 166.4434 |
| QAQ1   | 2170942.1348 | -2251829.9647              | 5539988.3259 | 60       | 42       | 54.947521 | -46 | 2        | 51.944911 | 110.4130 |
| REYK   | 2587384.3347 | -1043033.5212              | 5716564.0159 | 64       | 8        | 19.622028 | -21 | 57       | 19.747985 | 93.0254  |
| RI00   | 3183914.0589 | 1421473.6508               | 5322796.8693 | 56       | 56       | 54.470984 | 24  | 3        | 30.965538 | 29.3703  |
| RIGA   | 3183899.2311 | 1421478.4814               | 5322810.7950 | 56       | 56       | 55.030029 | 24  | 3        | 31.584060 | 34.7321  |
| ROMU   | 2410839.1841 | 1388069.6051               | 5720515.3016 | 64       | 13       | 2.633043  | 29  | 55       | 54.128943 | 241.7122 |
| RORO   | 3339312.1912 | 686422.8320                | 5372576.0238 | 57       | 46       | 37.037051 | 11  | 36       | 56.925641 | 51.3375  |
| SAND   | 3228737.1194 | 582180.5439                | 5451381.2483 | 59       | 7        | 44.297174 | 10  | 13       | 16.667687 | 69.1965  |
| SCOB   | 1982098.7615 | -798842.3819               | 5989460.9759 | 70       | 29       | 6.843693  | -21 | 57       | 3.030487  | 128.6601 |
| SIRE   | 3323397.4067 | 336993.7003                | 5415278.0084 | 58       | 30       | 11.332457 | 5   | 47       | 24.081018 | 60.7412  |
| SKAN   | 3537800.6052 | 807531.9492                | 5227707.7794 | 55       | 24       | 49.546891 | 12  | 51       | 28.598544 | 48.5894  |
| SKE0   | 2534030.9116 | 975174.5562                | 5752078.5305 | 64       | 52       | 45.110128 | 21  | 2        | 53.843856 | 81.2760  |
| SKIL   | 3511254.6709 | 893660.5319                | 5231575.3295 | 55       | 28       | 29.581761 | 14  | 16       | 45.689267 | 58.1286  |
| SKOL   | 3187460.1361 | 543919.0213                | 5479516.0650 | 59       | 37       | 21.890422 | 9   | 41       | 1.931713  | 200.8681 |
| SMID   | 3557911.2557 | 599176.6633                | 5242066.4356 | 55       | 38       | 26.322944 | 9   | 33       | 33.500665 | 122.8327 |
| SMOG   | 3290543.5591 | 652615.2074                | 5406535.5696 | 58       | 21       | 12.471069 | 11  | 13       | 4.539838  | 45.2410  |
| SMYG   | 3536512.2937 | 840549.8098                | 5223404.0052 | 55       | 20       | 44.521024 | 13  | 22       | 11.464728 | 50.1424  |
|        |              |                            |              |          |          |           |     |          |           |          |

| SODA | 2200146.7036 | 1091638.3381  | 5866870.7880 | 67 | 25 | 15.093320 | 26  | 23 | 20.585324 | 299.8229 |
|------|--------------|---------------|--------------|----|----|-----------|-----|----|-----------|----------|
| SODE | 2993266.3958 | 996674.0302   | 5524712.0255 | 60 | 26 | 14.258303 | 18  | 24 | 58.739357 | 40.6700  |
| SOHR | 3172308.3354 | 603814.0171   | 5481968.1359 | 59 | 40 | 1.090794  | 10  | 46 | 36.166100 | 157.1570 |
| SPT0 | 3328984.5532 | 761910.2482   | 5369033.6743 | 57 | 42 | 53.850377 | 12  | 53 | 28.855826 | 219.9590 |
| STAG | 3629048.0697 | 603765.6761   | 5192855.8322 | 54 | 51 | 55.046350 | 9   | 26 | 44.871500 | 107.8279 |
| STAS | 3275753.6501 | 321111.0210   | 5445042.0601 | 59 | 1  | 3.762503  | 5   | 35 | 55.045971 | 104.9091 |
| STAV | 3091410.6638 | 1045979.3692  | 5461608.2947 | 59 | 18 | 31.907169 | 18  | 41 | 35.729775 | 35.9610  |
| SULD | 3446394.2311 | 591713.1255   | 5316383.4430 | 56 | 50 | 30.333334 | 9   | 44 | 31.763396 | 120.7238 |
| SUND | 2838909.6615 | 903822.2116   | 5620660.4023 | 62 | 13 | 56.910531 | 17  | 39 | 35.596037 | 31.8545  |
| SUUR | 2959056.4001 | 1341058.5074  | 5470427.2905 | 59 | 27 | 48.885841 | 24  | 22 | 48.939380 | 84.3878  |
| SVEG | 2902494.8383 | 761455.9556   | 5609859.8784 | 62 | 1  | 2.688705  | 14  | 42 | 0.045826  | 491.2547 |
| TGDE | 3358080.9309 | 445364.8938   | 5386152.9195 | 58 | 0  | 22.955296 | 7   | 33 | 17.115036 | 45.8465  |
| THU3 | 538093.5751  | -1389088.0458 | 6180979.2342 | 76 | 32 | 13.370874 | -68 | 49 | 30.128747 | 36.1128  |
| TONS | 3301576.3569 | 389093.1040   | 5425120.9079 | 58 | 40 | 18.850932 | 6   | 43 | 16.843288 | 114.2979 |
| TRDS | 2820170.8438 | 513486.0350   | 5678935.9228 | 63 | 22 | 16.980735 | 10  | 19 | 8.965119  | 317.7273 |
| TRMS | 2102928.4974 | 721619.4468   | 5958196.2416 | 69 | 39 | 45.784765 | 18  | 56 | 22.726281 | 138.0775 |
| TRO1 | 2102928.5009 | 721619.4480   | 5958196.2509 | 69 | 39 | 45.784757 | 18  | 56 | 22.726281 | 138.0875 |
| TROM | 2102940.2233 | 721569.4457   | 5958192.1621 | 69 | 39 | 45.894457 | 18  | 56 | 17.985501 | 132.4668 |
| TRYS | 2987993.8613 | 655946.2118   | 5578690.2102 | 61 | 25 | 23.574380 | 12  | 22 | 53.696458 | 724.8430 |
| TUOR | 2917810.7826 | 1205222.7052  | 5523550.1084 | 60 | 24 | 57.056722 | 22  | 26 | 36.327098 | 60.6104  |
| TYVH | 3471138.4076 | 665488.5483   | 5291632.4792 | 56 | 26 | 16.774424 | 10  | 51 | 11.096034 | 88.7469  |
| ULEF | 3223773.3753 | 527002.8206   | 5459933.8030 | 59 | 16 | 41.076115 | 9   | 17 | 3.274375  | 125.3200 |
| UMEA | 2682407.6446 | 950396.0454   | 5688993.3082 | 63 | 34 | 41.300247 | 19  | 30 | 34.549591 | 54.5790  |
| UPPS | 3060037.7056 | 970123.0043   | 5492999.4098 | 59 | 51 | 54.540651 | 17  | 35 | 24.591261 | 57.1965  |
| VAAS | 2699864.3556 | 1078263.9918  | 5658064.8676 | 62 | 57 | 40.295035 | 21  | 46 | 14.289396 | 58.1255  |
| VAEG | 3612854.9835 | 763382.4428   | 5183133.8156 | 54 | 42 | 51.926954 | 11  | 55 | 51.201093 | 60.5552  |
| VANE | 3249408.0322 | 692758.0951   | 5426397.1326 | 58 | 41 | 35.258530 | 12  | 2  | 6.011876  | 169.7226 |
| VARS | 1844607.3153 | 1109719.1996  | 5983936.1431 | 70 | 20 | 10.942448 | 31  | 1  | 52.299045 | 174.8800 |
| VAST | 3097214.7217 | 921046.1324   | 5480693.5904 | 59 | 38 | 44.457217 | 16  | 33 | 40.910815 | 68.5528  |
| VIL0 | 2620258.6177 | 779138.1343   | 5743799.4697 | 64 | 41 | 52.250636 | 16  | 33 | 35.750977 | 450.0173 |
| VIRO | 2788248.1976 | 1454873.4666  | 5530280.1810 | 60 | 32 | 19.682937 | 27  | 33 | 17.987572 | 36.9750  |
| VIS0 | 3246470.2796 | 1077900.4966  | 5365278.0866 | 57 | 39 | 13.931083 | 18  | 22 | 2.340221  | 79.8217  |
| VLNS | 3343600.6532 | 1580417.7287  | 5179337.2871 | 54 | 39 | 11.313802 | 25  | 17 | 55.206790 | 240.8501 |
| VOLL | 3498678.0362 | 858203.7287   | 5245922.9922 | 55 | 42 | 6.565192  | 13  | 46 | 55.830832 | 141.3360 |
| ZINK | 3196313.2901 | 861751.7063   | 5433743.3811 | 58 | 49 | 9.704703  | 15  | 5  | 19.105467 | 231.2861 |