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Preface 
The purpose of the report is to give an exhaustive description of the methods 
developed by the author during the years 1995 – 2004 in the process of 
establishing transformations between RT 90, the municipal systems and 
SWEREF 93/99. It is assumed that the reader is aware of the fundamental 
concepts and the geodetic systems that are used in Sweden.  

The author greatly thanks Jonas Ågren and other colleagues at the geodetic 
development division for contributing with valuable comments on the work. 
Special thanks to Lars E Engberg for transferring the text to the document 
standard of Lantmäteriet* . 
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1 Problem description 
With the break-through of GPS technology, the need arose to transform 
coordinates between SWEREF 99 (initially SWEREF 93) and RT 90 as well as 
various local systems. 

2 Involved systems 

2.1 SWEREF 99 
SWEREF 99 differs from the other systems by being a true 3-dimensional system 
with global connection. The positions of the reference points are determined in a 
Cartesian coordinate system (X, Y, Z), the origin of which nearly coincides with 
the centre of gravity of the earth. The reference ellipsoid GRS 80 is tied to the 
system. The centre of the ellipsoid coincides with the origin of the Cartesian 
system. The relation between the Cartesian coordinates of a point (X, Y, Z) and 
the geodetic coordinates of the point, latitude, longitude and height above the 
ellipsoid, (ϕ, λ, h), can be written by the formula (see also figure 1) 

( ) cos cos
( ) cos sin

( ( ) )sin21

X N h
Y N h
Z N e h

⎡ ⎤+ ϕ λ⎡ ⎤
⎢⎢ ⎥ = + ϕ λ⎢⎢ ⎥
⎢ ⎥⎢ ⎥ − + ϕ⎣ ⎦ ⎣ ⎦

⎥
⎥  (2-1) 

/ sin2 21N a e= − ϕwhere  and a is the semi major axis of the ellipsoid, e2 is the 
first eccentricity squared and N is the radius of curvature of the prime vertical. 

λ 

Z 

Y 

X 

h 

 ϕ

Geocentric Cartesian system and geodetic system. Figure 1: 



2 Involved systems  

 

As shown in figure 1, the X- Y- and Z coordinates refer to a system with its origin 
in the centre of the ellipsoid. Let us, somewhat improperly, call this type of coordinates 
geocentric coordinates.   

The transformation from (X, Y, Z) to (ϕ, λ, h) is here left out but can be 
performed completely without loss of accuracy, see for example Bowring (1976). 

2.2 RT 90 
RT 90 is a 2-dimensional system where positions are given as latitude and 
longitude, (ϕ, λ), relative to the reference ellipsoid Bessel 1841. For most 
triangulation points in the national network, there are heights above the sea level 
in the RH 70 system, yet their quality is varying. Worse still, the geoid corrections 
required for transforming the RH 70 heights to heights over the Bessel ellipsoid 
are of even lower quality, with errors at the level of 1-2 m. This contaminates the 
geocentric coordinates (X, Y, Z) which can only be obtained from (ϕ, λ, h) 
through transformation using equation (2-1). 

2.3 RR 92 
The National Reference System of 1992. An “untrue” three-dimensional system 
based on Bessel’s ellipsoid. It is simply a joining together of the horizontal system 
RT 90, the geoid height system RN 92 and the height system RH 70. 

The origin that is the centre point of the reference ellipsoid, of RR 92 was 
placed about a kilometre from the Earth’s centre of gravity. It was placed there to 
obtain a good national fit to the geoid. Globally however, this placement as well 
as the dimensions of the ellipsoid is of poor accordance. 

RN 92 
The geoid heights in RN 92 refer to Bessel’s ellipsoid, oriented in such a way as to 
make the geoid heights roughly coincide with those of the older Swedish geoid 
height system RAK 70. RN 92 was thereby intended to be of use for three-
dimensional computations, for example in GPS surveying, as well as for height 
reduction of conventionally surveyed distances.  

2.4 Municipal systems 
The municipal systems are 2-dimensional Cartesian grid systems (x, y). The 
manner in which the systems are defined varies among the municipalities. Most 
systems are connected to the older national system RT 38 or one of the so-called 
regional systems. Because of the inferior geometrical quality of RT 38, the system 
has in some cases been tied to just one point in combination with orienting the 
system with the help of some additional point, in order to avoid the defects of 
RT 38 being propagated in the local system. Municipal systems, defined 
completely separately from the national systems here mentioned, also occur. By 
applying projection corrections for Gauss-Krüger’s projection, in accordance with 
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current regulations (VF/TFA), the municipal systems have received geometrical 
properties corresponding to this projection. In most cases, there is no method, 
given à priori, to transform the grid coordinates (x, y) to geodetic coordinates, 
and, consequently, neither to geocentric coordinates. 

2.5 Conventional systems 
From now on, the term conventional systems is used for all systems that, similar 
to RT 90 and the municipal systems, have been created with the help of 
conventional distance- and angle measurements.  

3 Transformation methodology 
Transformation methodology refers to the methods that are applied when two or 
more horizontal systems are used in the same geographic area and one wishes to 
transfer the coordinates of points within the area from one system to another. 

The most common method for transforming coordinates between globally 
connected systems and national reference frames of an older type, in our case 
between SWEREF 99 and RT 90, is to use a similarity transformation in three 
dimensions (3D Helmert transformation). It is assumed that one has access to 
coordinates of good quality in both systems for a number of points, henceforth 
called common points. The points should preferably be evenly distributed within 
the area in which the set of transformation parameters is to be used. The 
procedure is to first perform a fit based on the common points, where the seven 
parameters that compose the transformation are estimated: three translations, 
three rotations and one scale correction. The estimated parameters are then used 
to transform the remaining points in the area. Even though three common points 
are sufficient to determine the parameters, the number of points should be no 
less than 10 and may well be more, depending on the circumstances. In order to 
avoid ambiguousness, only one set of parameters should be determined for each 
area.   

A detailed run through of how the 3D Helmert transformation has been 
implemented is given in the following section.  

The question of transformation between SWEREF 99 and the municipal 
systems is more complex and this will be treated in section 8 Projection fit. 

4 Similarity transformation in 
3 dimensions 

By the name Similarity transformation in 3 dimensions – or 3D Helmert 
transformation – it is made clear that this transformation preserves the shape of 
objects. In vector form the mathematic relation can be written as 



4 Similarity transformation in 3 dimensions  

 

( )1

B A

X X X
Y Y Y
Z Z Z

Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= Δ + + δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

R  (4-1) 

where the vectors indexed A and B, respectively, symbolize coordinates of the 
two systems that the transformation is performed between, where (ΔX, ΔY, ΔZ)T 

constitutes the translation vector between the origins of the systems, δ the scale 
correction and where the rotation matrix R is defined as 

cos sin cos sin
sin cos cos sin

sin cos sin cos

0 0 1 0
0 0 1 0 0

0 0 1 0 0

Z Z Y Y

Z Y X Z Z X X

Y Y X

Ω Ω Ω − Ω⎛ ⎞⎛ ⎞⎛
⎜ ⎟⎜ ⎟⎜= = − Ω Ω Ω⎜ ⎟⎜ ⎟⎜
⎜ ⎟⎜ ⎟⎜Ω Ω − Ω⎝ ⎠⎝ ⎠⎝

R R R R
0

X

⎞
⎟Ω ⎟
⎟Ω ⎠

A

(4-2) 

and ΩX, ΩY and ΩZ is the rotation around each axis. 

(4-1) can be written compactly as 

( )1B = Δ + + δX X RX  (4-3) 

A coordinate transformation can be interpreted in two ways: either one studies 
the changes and movements of an object within a single coordinate system or one 
studies the same object seen in two separate coordinate systems. In geodesy, we 
deal with the latter issue, that is, the two reference systems involved are seen as 
two different models that describe reality. 

The three-dimensional Helmert transformation became more generally spread 
within geodesy with the use of satellite technology for positioning. Initially, 
neither the measurement techniques nor the systems were very accurate, which is 
why linearised versions of formulas (4-1) and (4-2) were widely spread, not least 
because of the publication by the Defence Mapping Agency in the USA of a 
report, DMA TECHNICAL REPORT tr8350.2-a, which contained a linearised 
formula. The problem with the simplified formulas is that they do not fulfil the 
current consistency requirements of the computations. It is also awkward to 
produce the strict inverse of the linearised versions. The strict inverse 
transformation of formula (4-1) can very easily be computed thanks to the fact 
that the inverse of matrix R is identical to its transpose (R-1=RT). There is also no 
reason in terms of efficiency to linearise formula (4-1) since the nine elements of 
matrix R are only computed once, which means that the transformation of a 
certain number of points takes the same time either the complete formula or a 
linearised version is used.  

It should be noted that even though the transformation is in three dimensions, 
in practice, it is only the horizontal component that one is interested in 
transforming. The height component can be regarded as an unfortunate 
necessity. As we shall see later, it causes quite a lot of trouble both at the 
computation of the parameters and when transforming points. 
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4.1 Procedure for determining ΔX, ΔY, ΔZ, ΩX, ΩY, 

ΩZ and δ 
To be able to compute numerical values for the parameters, access to common 
points, whose coordinates are known in both systems is required. As previously 
pointed out, the common points should be evenly distributed over the area 
within which one wishes to use the parameters. By inserting the known 
coordinates for systems A and B into formulas (4-1) and (4-2), each point yields 
three equations, one for each of the coordinates X, Y and Z, contributing to 
determine the constants ΔX, ΔY, ΔZ, ΩX, ΩY, ΩZ and δ. Since three or more 
common points are used, the system of equations will be over-determined, which 
makes the method of least squares suitable for solving it. Since the equations are 
not linear with respect to the rotations and scale, some manual work is required 
to solve for the unknown parameters. More is said about this in section 5 3D 
Helmert fit between two topocentric systems. 

In the immediate following section, the procedure for computation of the 
older set of transformation parameters between WGS 84 and RT 90 and between 
SWEREF 93 and RT 90 (RR 92), published by the National Land Survey, is 
presented. 

4.2 The WGS 84 – RT 90 transformation parameters 
With the break-through of GPS technology, a need to transform coordinates 
determined by GPS to RT 90 immediately arose. In 1989, the National Land 
Survey, Hedling & Reit(1989), produced a set of transformation parameters. The 
WGS 84 coordinates were based on two Scandinavian Doppler campaigns 
(SCANDOC) which contained seven Swedish points. The fit was performed 
using the module Helmer in the so-called Bernese software. The accuracy was 
quite modest, with a residual of 2.4 metres per coordinate. However, this was of 
no great consequence since the transformation parameters were meant for 
applications in cartography and navigation.  

4.3 The SWEREF 93 – RT 90 transformation 

parameters 
In 1993, a surveying campaign was carried out where 22 Swedish stations were 
surveyed, most of which are among the present SWEPOS stations, with massive 
support from the Onsala Space Observatory. The solution was computed by Jan 
Johansson at Onsala in ITRF 91, epoch 1992.5, and was fitted into EUREF 89 
using 11 points in Northern Europe with known EUREF 89 coordinates. The 
coordinates obtained thereof defines SWEREF 93. The internal accuracy for the 
horizontal component (1σ, 2D) was estimated to 2 cm. The corresponding 
accuracy in RT 90 was, according to experience, 1-2 cm between adjacent points. 
Because of the strength of the network, where the observations were adjusted 
along with the triangulation nets of the neighbouring countries, no great 
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deformations of RT 90 over the country as a whole was expected, apart from a 
possible difference in scale. The residuals should presumably be around 5-10 cm 
expressed as rms (2D).  

On this occasion too, the computation of the parameters was performed in the 
software module Helmer, in which the Helmert formula is implemented entirely 
in conformity with equations (4-1) and (4-2). An analysis showed that rms of the 
horizontal residuals was over 13 cm, with a maximum error of 35 cm in Kiruna, 
which was considerably worse than expected. A graphic presentation showed 
apparent systematic tendencies for the residual vectors. Further investigations 
yielded that part of the error originated in flaws in the geodetic definition of 
RT 90. 

The foundation of RT 90 was an adjustment on Hayford’s ellipsoid of all 
distance- and angle measurements, performed with original coordinates in 
ED 87. The reason for this was that a reliable geoid model for distance reduction 
was accessible only for Hayford’s ellipsoid from 1910. When RT 90 was 
introduced, there was a demand from cartographers that the RT 90 coordinates 
should differ as little as possible from the corresponding RT 38 coordinates. With 
regard to the tight schedule for the construction of the digital map, a change from 
Bessel 1841 to Hayford 1910 was not possible. Therefore, the creation of RT 90 
somewhat meant pulling oneself up by the hair. However, compared to many 
other countries, the size of the residuals for the Swedish transformation was on a 
rather modest level. By the end of 1994 the new set of transformation parameters 
were made public. 

5 3D Helmert fit between two topocentric 
systems 

5.1 Problem definition 
The issue of the poor fit remained. Most likely, the discrepancy was caused by 

flaws in the geoid model and that the difference in the radius of curvature 
between the Bessel and Hayford ellipsoids in some way affected the definition of 
RT 90. Both phenomenons were clearly height related. Software was needed, in 
which to perform the fit, where the height constraint could be eliminated. The 
module Helmer could not manage this and neither could any other software, 
which gave cause for the development of an own programme. In this software, 
the RT 90 heights were introduced as unknown entities. This was not difficult to 
accomplish, which can be realized when studying equations (2-1) and (4-1). The 
results of this experiment proved very successful and the rms value dropped 
from 13 to 5 cm.  

Even though the results were satisfactory, the formulation was not sufficiently 
universally applicable. A more general approach would be to reformulate the 
problem so that in the fit, the heights are weighted according to their expected 
accuracy. Another disadvantage with both Helmer and this software was that the 
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rotation parameters referred to the geocentric coordinate axes and the 
translations to the shift between the centres of the ellipsoids. If the fit is 
performed between two global systems, with common points distributed over 
several continents, this type of parameters is well suited to describe the relation 
between the systems, but in remaining cases the area covered by the fit is a 
relatively small part of the earth surface. When looking at a globe, one realizes 
this holds true also for continental systems such as ED 50 and NAD 83. 

For systems covering a minor part of the earth surface, introducing a 
topocentric system for each ellipsoid, see figure 2, and performing the fit between 
these systems, has distinct advantages and, which will be shown later, facilitates 
the understanding of the procedure of the fit. Provided the coordinates for the 
origins of the topocentric systems are chosen correctly, the rotation around the z-
axis will correspond to the azimuthal rotation between the systems while the 
rotations around the other two axes describes the local tilt between the ellipsoid 
surfaces in the area. Finally, the translation (Δz) along the topocentric z-axis gives 
the distance between the ellipsoid surfaces around the topocentre. As will be 
seen later on, the translation (Δz) and the scale correction δ are closely connected.   

Among the advantages is also an improved numeric precision in the 
computations, compare to centre of gravity reduction at 2D Helmert fit. 

5.2 Relation between topocentric systems 
The following is a presentation of how the relation between the topocentric 
systems can be derived and how the parameters obtained from a fit can be 
converted to the corresponding geocentric parameters. 

From now on, we will use capital letters for geocentric coordinates and lower-
case letters for topocentric. The origins of the topocentric systems are placed at 
the point (ϕ0, λ0, 0) on the surface of each ellipsoid, with the z-axis coinciding 
with the outward-directed ellipsoid normal, the x-axis in the meridian plane and 
the y-axis oriented so as to make up a left-oriented system. The topocentric xy-
plane is consequently a tangential plane of the ellipsoid, see figure 2. 
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From the figure we can derive the following relation between the vectors X, X0 
and x and between the unity vectors in the geocentric and the topocentric system. 

= +0X X x  (5-1) 

0 0 0 0 0

0 0

0 0 0 0 0

sin cos sin sin cos
sin cos

cos cos cos sin sin

ϕ λ ϕ λ ϕ
λ λ

ϕ λ ϕ λ ϕ

= − − +
= − +

= + +

x X Y

y X Y

z X Y

e e e
e e e

e e e

Z

Z

e

e
 (5-2) 

With equations (5-1), (5-2) we can now write  

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

sin cos sin cos cos
sin sin cos cos sin

cos 0 sin

X X x
Y Y  y
Z Z z

ϕ λ λ ϕ λ
ϕ λ λ ϕ λ
ϕ ϕ

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (5-3) 

We introduce the term M0 for the matrix in equation (5-3) that transfers the 
topocentric vector components to the corresponding geocentric ones. As can be 
seen, the equations (4-1) and (5-3) are similar. However, observe that in equation 
(5-3), the two systems involved are of different orientation. Similar to matrix R, 
the inverse of M0 is equal to its transpose (M0-1=M0T).  

For conversion of geocentric coordinates to topocentric the formula is 

0
1

0

0

x X
y  Y Y
z Z

−

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
⎢ ⎜ ⎟⎜ ⎟ ⎜ ⎟= −⎢ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

M 0

X

Z

⎥
⎥  (5-4) 

Figure 2: The topocentric and geocentric coordinate systems 
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Before the geocentric coordinates can be converted to topocentric, ϕ0 and λ0 must 
be assigned appropriate values. Theoretically, one can chose arbitrary values for 
each ellipsoid (nor does h need be equal to 0), but for the conversion to 
topocentric systems to be effective both systems should be assigned the same 
numerical values (ϕ0, λ0, 0), whereby the axes of the topocentric system are given the 
same orientation relative to the geocentric system in both system A and system B, and 
the point chosen should be in the centre of the area concerned in the fit, for 
example the average of the horizontal coordinates of the common points in the 
system deemed to have the most reliable coordinates. 

We thus have 

0 0A A= +X X M xA A

B )0B

 and , (5-5) ( )1
0 0A A
−= −x M X X

0 0B B= +X X M x  and  (5-6) (1
0B B
−= −x M X X

respectively. 

Note that, even though the same numerical values (ϕ0, λ0, 0) are used in 
system A and system B, the vector X0A will differ from the vector X0B, since 
different ellipsoids were used in the computation. 

After the conversion to topocentric systems, the fit is performed. Indicate the 
parameters for the translations and rotations between the topocentric systems by 
Δx, Δy, Δz and ωx, ωy, ωz, respectively. The scale correction δ is the same 
irrespective of whether the fit is performed between the geocentric systems or the 
topocentric. 

Analogous to the geocentric case, the similarity transformation between the 
topocentric systems can be written as   

1 Topo

B A

x Δx x
y Δy ( δ)  y
z Δz z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

R or, alternatively ( )= Δ + + δ1B Tx x R xopo A

x

 (5-7) 

where 

( ( (

cos sinsin
sin cos cos sin

sin cos sin cos

) ) )= = 

0 cos 0 1 0 0
0 0 1 0 0

0 0 1 0 0

Topo z z y y x x

y yz z

z z x

y y x x

ω ω ω

ω − ω⎛ ⎞ω ω ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟= − ω ω ω ω⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ω ω − ω ω⎝ ⎠ ⎝⎝ ⎠

R R R R

 (5-8) 

⎠

As previously pointed out, the choice of identical values (ϕ0, λ0, 0) in the 
definition of the origin for system A and system B makes the interpretation of the 
rotation parameters easier. For example, the rotation around the topocentric z- 
axis is equivalent to an azimuthal rotation between the systems. As is shown in 
equation (5-7), Δz corresponds to the separation of the ellipsoid surfaces in the 
area of the topocentric origins.  
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By inserting the known coordinates in equation (5-7), three equations for each 
common point are obtained. If the number of points is ≥ 3, we have more 
constraints than unknown parameters and the system of equations is solved by 
the method of least squares, which means that for each equation a so called 
residual is added and the chosen solution is the one that minimizes the sum of 
the squares of the residuals. As mentioned in the beginning, the accuracy of the 
heights of the common points is normally lower than that of the planar 
components. This is particularly true for the conventional systems, partly 
because the heights of the common points are often not obtained by levelling and 
partly because of defects in the geoid model. To avoid the poor fit in height 
spilling over to the fit in the horizontal components it is necessary to down-
weight the height fit. For small areas it is sufficient to down-weight the equation 
for the z component of system B. Because of the curvature of the earth the 
orientation of the axes, north, east and up, for points far from the topocentre will 
differ from the axes of the topocentric system. Thus, the weighting will not be 
entirely correct. As a first step to solving this problem we bring back equation 
(5-7) to the geocentric axial orientations of system B by multiplying with the 
matrix M0, which is obtained by inserting the latitude- and longitude values of 
the topocentre. We also reverse the left-hand and right-hand sides of the 
equation. For the ith common point we get  

( ( ) )0 1 Topo iA iBΔ + + δ =M x R x M x0

−1
0

 (5-9) 

We now want to transfer equation (5-9) to the axial orientations (north, east, up) 
of the ith point. We achieve this by multiplying equation (5-9) with the matrix 
obtained by inserting the latitude- and longitude values of the ith point for system 
B into the expression for the inverse of matrix M. Finally, by adding the residual 
vector vi, the three observation equations for the ith point can be written as 

( ( ) )− Δ + + δ = +1
0 1M M x R x M M x viB Topo iA iB iB i  (5-10) 

Now the equations can be assigned weights corresponding to the quality of the 
entered coordinates. We can affirm that with our way of formulating the 
observation equations there is no correlation between the observations, with the 
possible exception of that caused by the manner in which the coordinates were 
once established. 

In the case of conventional systems, we can assume that errors in the planar 
components and the height component are uncorrelated. Since the planar 
coordinates most likely have been obtained in a process of adjustment, there 
probably exists correlation between the errors of the coordinates of different 
points. However, it is less likely that these correlations are accessible. The same is 
true for the two planar components of each point. Because of the added geoid 
correction, it is also likely that the errors in height show a certain correlation 
between different points. To try to take that into consideration is difficult and 
hardly of value for the problem of the fit. 
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In the case of the SWEREF systems and similar global systems, the error level is 
so low that the coordinates in this context can be regarded as without error. 
Therefore, in the fit, it feels suitable to always choose these systems as the system 
one transforms from (system A), thus the residuals will be added to the 
coordinates of the conventional systems.  

The conclusion of the above discussion is that one can, without major 
limitations, regard the variance-covariance matrix as diagonal, which means that 
when forming the observation equations one only needs to divide each equation 
with its à priori standard deviation.   

5.3 Linearization 
The next problem to handle is the fact that equation (5-10) is not linear with 
respect to the unknown entities Δx, Δy, Δz, ωx, ωy, ωz and δ. This is customarily 
solved by linearization combined with iteration. The method is favourable for 
this problem since the sought rotations and scale correction normally are small 
entities, but works excellently also with arbitrarily large rotations and scale 
changes.  

The procedure can shortly be described in the following way. The expression 
within parentheses in equation (5-10) is denominated by F(Δx,Δy,Δz,ωx,ωy,ωz,δ). 
We then get 

( , , , , , , ) ( )Δ Δ Δ ω ω ω δ = Δ + + δ1x y z Topo iAx y zF x R x

0

 (5-11) 

We now perform a Taylor series expansion around the approximate 
values 

0 0 0 0 0( ) , ( ) , ( ) , ( ) , ( ) , ( )x y zx y zΔ Δ Δ ω ω ω and  0( )δ

∂ ∂ ∂
= + Δ + Δ + Δ +

∂Δ ∂Δ ∂Δ
∂ ∂ ∂ ∂

+ ω + ω + ω +
∂ω ∂ω ∂ω ∂δ

0 0 0 0

0 0 0

F ( ) ( ) ( )

( ) ( ) ( ) ( )x y z
x y z

d x d y d z
x y z

d d d

F F FF

F F F F
δ0 d

 (5-12) 

where the corrections dΔx, dΔy, dΔz, dωx,, dωy,, dωz and dδ are the unknowns and 
where the approximate value F0 is defined as 

( ) ( ) ( ) ( ) ( ) ( ) ( )( , , , , , ,0 0 0 0 00 0x y zx y z= Δ Δ Δ ω ω ω δF F )0  

For the partial derivatives we get 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂Δ ∂Δ ∂Δ ∂δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0 0 0
1 1 0
0 0 1

Topo A ;      ;      ;      ;  
x y z

F F F F R x  
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Inserting the expression on the right-hand side of the equals sign in equation 
(5-11) into equation (5-10) gives us the final observation equations. After 
estimating the unknown corrections with the method of least squares, these 
values are added to the approximate values and the entire procedure is repeated 
as long as the corrections make a significant contribution to the estimated 
parameters. It can be shown that having all approximate values set to zero in the 
first iteration step works excellently.   

Comment: The formulation of the observation equations were based on the 
topocentric systems. If formulating the equations for geocentric parameters is 
preferred, one shall instead multiply equation (4-1) with the inverse (transpose) 
of matrix MiB. Then the three observation equations for the point become 

i ( )− Δ + + δ = +X ( )RX X1 1B A iBM Mi i i
−1

B v  (5-13) 

The disadvantage of this approach is that one deprives oneself of the possibility 
to analyze the result of the fit that is offered by the topocentric approach, see 
detailed studies in a subsequent section (7 Detailed Study of 3D Helmert fit with 
real data). 

6 Computation of transformation parameters 
The parameters obtained by the procedure previously described can be used 
together with equation (5-7) to transform topocentric coordinates, which is not 
particularly useful. Instead we shall derive a method for computation of 
parameters for the transformation between the geocentric systems from the 
topocentric parameters. 

6.1 Computation of geocentric transformation 

parameters from topocentric 
We begin by replacing xA and xB in equation (5-7) with the expressions from (5-5) 
and (5-6). For anyone who doubts that the scale correction must be the same in 
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(4-1) and (5-7) we denote the topocentric scale δTopo. After reducing the expression 
in accordance with (5-7) we get 

(− −= + Δ − + δ + + δ( ) 1 1
0 0 1 1B B Topo 0 Topo 0 A Topo 0 Topo 0 A)X X M x M R M X M R M X0  (6-1) 

Similar to (4-1), equation (6-1) shall hold true for all points. By comparing 
equation (6-1) and (4-1) it is evident that 

 (6-2) δ = δTopo

−Δ = + Δ − + δ( ) 1
0 0 0 01B Topo Topo AX X M x M R M X0  (6-3) 

−= 1
0 TopoR M R M0

0A

 (6-4) 

The translation vector ΔX can, with the help of equation (6-4), be further 
simplified to 

Δ = + Δ − + δ( )0 0 1BX X M x RX  (6-5) 

Comment: One can easily be misled into thinking that if one transforms the 
coordinates for X0A one gets the coordinates for X0B, but this is not the case since 
the two topocentres refer to different points in the three-dimensional space. 

It is appropriate to first solve for the rotations ΩX , ΩY and ΩZ, since they are 
needed to compute the translations according to equation (6-5).  

We begin by multiplying the algebraic expressions for the three matrices RX, 
RY and RZ on the left-hand side of equation (6-4), compare to equation (4-1). We 
similarly compute numeric values for the nine matrix elements on the right-hand 
side. We then get 

=

Ω Ω Ω Ω + Ω Ω Ω − Ω Ω Ω + Ω Ω⎛ ⎞
⎜ ⎟− Ω Ω Ω Ω − Ω Ω Ω Ω Ω + Ω Ω Ω⎜ ⎟
⎜ ⎟Ω − Ω Ω Ω Ω⎝ ⎠

Y Z X Z X Y Z X Y Z X Z

Y Z X Z X Y Z X Z X Y Z

Y X Y X Y

   cos cos cos sin sin sin cos cos sin cos sin sin
cos sin cos cos sin sin sin     sin cos cos sin sin

sin sin cos cos cos

LHS

 (6-6) 

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

11 12 13

21 22 23

31 32 33

R R R
RHS R R R

R R R
 (6-7) 

A comparison of the left-hand and the right-hand sides gives ΩY = arcsin R31. 
With ΩY known, ΩX can be computed from R32 and ΩZ from R21. The fact that arc 
sinus is ambiguous is a complication. Normally, the rotation angles are very 
small, which means that the values within the range -π/2 to π/2 can be chosen. If 
a solution valid for arbitrarily large rotations is required, it gets considerably 
more difficult since there are eight combinations to choose from, of which not all 
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recreate the values on the right-hand side. For certain angles, e g if ΩY ≈ ±π/2, 
one also needs to choose a different approach than the one suggested here. 

Finally, we compute the numeric values for the translation vector with 
equation (6-5). 

6.2 Computation of inverse parameters 
There is sometimes need to transform coordinates in the opposite direction of 
that intended by the computed parameters. Three alternative ways of solving this 
problem can be considered. 

(4-1)1. Use the same parameters but take the inverse of equation. . That is, use the 
formula 

−
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟= −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

1

A B

1

X X ΔX
Y  Y ΔY

( δ)
Z Z ΔZ

R  (6-8) 

As previously mentioned, the inverse of the rotation matrix is R-1 = RT= 
(RZ RY RX )T = (RX)T (RY)T (RZ)T which gives 

−

−⎛ ⎞⎛ ⎞⎛
⎜ ⎟⎜ ⎟⎜−⎜ ⎟⎜ ⎟⎜
⎜ ⎟⎜ ⎟⎜−⎝ ⎠⎝ ⎠⎝

1

1 0 0 cos 0 sin cos sin 0
 =  0 cos sin 0 1 0 sin cos 0

0 sin cos sin 0 cos 0 0 1

Y Y Z Z

X X Z Z

X X Y Y

Ω Ω Ω Ω
Ω Ω Ω Ω
Ω Ω Ω Ω

R
⎞
⎟
⎟
⎟
⎠

 (6-9) 

2. Use equation(4-1) but compute the inverse parameters by performing the fit in the 
opposite direction, that is reverse A and B in equation (4-1).    

(4-1)3. Use equation  but compute the inverse parameters from the matemathic/numeric 
inverse. 

In the third alternative, the same method is applied as in the computation of 
geocentric parameters from the topocentric, with the only difference that in the 
computation of the inverse rotation parameters the matrix with the numerically 
computed elements is first transposed, se equation (6-7). The inverse translation 
vector is obtained from the original translations with formula 

⎛ ⎞ ⎛
⎜ ⎟ ⎜= −⎜ ⎟ ⎜+⎜ ⎟ ⎜
⎝ ⎠ ⎝invers

1
invers

⎞
⎟
⎟
⎟
⎠

ΔX ΔX
ΔY ΔY

( δ)
ΔZ ΔZ

R  (6-10) 

where δ is the original scale correction. Finally, the inverse scale correction is 
obtained from 

δ)(
δ

invers +
−=

1
δ  (6-11) 

 



 Computation of transformation parameters 15
 

With the exception of GTRANS, there are probably exceedingly few software that 
can handle the inverse transformation according to the first alternative. 
Generally, one is therefore obliged to resort to one of the other two alternatives. 
The problem with the second alternative is that, because of the two least squares-
solutions not being completely symmetric, the parameters obtained from the 
inverse fit will not agree with the strict inverse. Thus, the conclusion is that one 
should choose the third alternative if consistency in the computation is desired. 
This leads to the next question at issue. 

6.3 Computational consistency for 3D Helmert 
Coordinates based on geodetic measurements are always marred by errors. The 
size of the errors varies and can have many different causes. Safe to say is that 
one always aims at the best possible accuracy with regard to costs and other 
prerequisites. Geodesists, as suppliers of the fundamental geodetic 
infrastructure, must strive to offer methods and products that satisfy the 
accuracy needs of all customers. There is no reason to let errors caused by 
simplified formulas or other flaws in the numerical handling be added to the 
error budget.  

Commonly in geodesy, coordinates are stored and presented with as many 
numbers needed to achieve consistency within the millimetre. This means 
latitude and longitude should be stored with at least five decimals in the arc 
second part or equivalent. In certain studies, for example based on SWEPOS data, 
there is reason to present tenths of millimetres, which requires six decimals in the 
arc second part. If a transformation of coordinates is performed in several steps, 
where intermediate results are stored as an edited print in a text file, these 
coordinates should be given at least one extra decimal. 

It is crucial that the methods offered by geodesists to users, and the computer 
software used when handling coordinates, have a computational consistency that 
corresponds to the highest expected accuracy. With the power of computers, it is 
long since there were any computational motives to waive this.  

The 3D Helmert transformation is one of the most abused procedures in 
geodesy. The algorithm is the object of a number of different simplifications. 
Moreover, there is some arbitrariness on how to define the order in which to 
perform the rotations as well as which direction of rotation should be considered 
positive. By applying different conventions and approximations in different 
contexts the numeric results run the risk of becoming inconsistent.  

Usually when performing a 3D Helmert transformation, one uses previously 
computed and published parameters. In case the software one uses to transform 
the coordinates does not apply the same conventions as the software that was 
used to estimate the parameters, there is a risk the results will not be entirely 
correct. We shall investigate some of the most common hazards. 

Do the parameters describe transformation from system A to system B or the 
opposite? It is not too uncommon that one is mistaken on this point. If the results 
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seem wrong but appears OK if the sign is changed for all parameters, this can be 
an indication, but do not stop here – investigate the details and figure out the 
true cause. Simply using parameters with changed signs can cause errors of 
varying size in the coordinates. Cheating like that when using the official 
transformation parameters for SWEREF 99 ↔ RR 92 will cause an error of 
roughly 1 cm, but if the rotations are larger the error grows rapidly 
(quadratically).  

Another obscurity that occurs is whether the rotations are considered positive 
clockwise or anti-clockwise: both options exist. 

As mentioned in a previous section, a common simplification of the 
computational algorithm is neglecting higher-order terms in the rotation matrix. 
One then gets 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Ω−Ω
ΩΩ−
Ω−Ω

=
1   

   1
   1   

XY

XZ

YZ

R  (6-12) 

Sometimes further “simplification” has been done by placing the scale factor 1+δ 
on the diagonal of the matrix. The benefit of these modifications is hard to 
realize. As pointed out earlier, no time is gained since the nine elements of the 
matrix are only computed once regardless of the number of transformed points. 
Formula (6-12) looks deceivingly simple, but anybody interested can try to derive 
the strict inverse of this matrix. The error caused by linearization grows with the 
square of the size of the rotations. For the official set of transformation 
parameters SWEREF 99 ↔ RR 92, the error is 2-3 mm. As shall be seen when we 
get to transformation parameters between SWEREF 99 and the municipal 
systems, some systems has an azimuthal rotation amounting to several degrees. 
For a rotation of 100 arc seconds (approximately 30 mgon), the error is 0,3 m and 
for 1 gon the size is in the order of 300 m. 

The next problem concerns the definition of rotation matrix R. So far, we have 
assumed that the multiplication order of the three partial matrices is RZRYRX. 
Theoretically, there are six different ways of multiplying the matrices. At least 
the following two variations have occurred in different international contexts, 
RXRYRZ  and RYRXRZ. The effect of using the wrong order of rotation is small. As 
long as the rotations remain small (<10 arc seconds) it amounts to some 
millimetres, but here as well the error grows quadratically with the size of the 
rotations. For rotations at the level of 1 degree it is a question of hundreds of 
metres. 

The complete lack of generally accepted conventions for 3D Helmert leads us 
to the following code of conduct: 

Never give out parameters without attaching a number of points with coordinates in 
the system from which transformation is to be performed as well as coordinates obtained 
by transformation using the parameters. Similarly, one should obviously demand a 
number of points for control of consistency between the parameters and software from 
those who give out the parameters. The valid geographic area for the parameters should 
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also be stated, in principle the area that is represented by the common points. For 
example, parameters can be determined for a project with very limited geographic 
extension such as the construction of a road, but from the stated system names one can 
easily get the impression that they are valid generally between the systems if not 
otherwise stated.  

Finally, an issue that one is not too uncommonly affected by, that the points to 
be transformed lack heights or that the available heights are heights above the 
sea level. That this can affect the accuracy of the horizontal position is due to the 
fact that the two involved ellipsoid surfaces are most often not completely 
parallel in the area in question. The size of the error is linearly dependent on the 
tilt between the ellipsoid surfaces in the area and on how erroneous the height is. 
An example of this is that if one transforms the 20 SWEPOS stations used in the 
detailed study in the next section with all heights set to zero, the maximum error 
is 11 mm. At a guess, a neglected geoid height gives an error of <1 mm.  

7 Detailed study of 3D Helmert fit with real 
data  

In this section we shall see how the modified approach for computation of 3D 
Helmert parameters works in practice. 

From what can be concluded of articles in journals and other literature, in 
Sweden as well as internationally, a deeper understanding of how the 
computation of transformation parameters for 3D Helmert works in a geodetic 
context seems to be surprisingly rare. A simple example of how the different 
parameters influence the result of the fit is illustrated below.  

Step by step the effect of the different parameters on the result of the fit is 
presented. As foundation for the study, the computation of parameters for 
transformation between SWEREF 99 and RR 92 is chosen, based on the 20 
fundamental points in the SWEPOS network. The example shows the gradual 
improvement of the residuals at the introduction of each new parameter. As a 
last step, the consequence of removing the constraint in height is studied.  

In order to make everything as concrete as possible, the following simple 
mechanical model is used. We regard the GRS 80- and Bessel ellipsoids as two 
completely separate models, both claiming to, as best as possible, describe reality. 
For each common point we imagine that on the surface of each ellipsoid an 
antenna is mounted, whose position coincides with the geodetic coordinates (ϕ, 
λ) and whose antenna height corresponds to the point’s height above the 
ellipsoid. For GRS 80 we use the SWEREF 99 coordinates and for Bessel the RR 92 
coordinates. 

Performing a fit means that we try to place the ellipsoids relative to each other 
in such a way as to minimize the sum of the squares of the distances between the 
antennae tips for each common point, obviously with regard to the limitation of 
movement implied by the choice of transformation parameters. For example, if 
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we do not estimate any rotations in the fit we must at all times keep the axes of 
the ellipsoids parallel.  

7.1 0-parameter fit 
As a first step we imagine a fit where all seven parameters are set to zero, that is 
the ellipsoids are placed concentrically with coinciding directions of axes and 
with no difference in scale. As a transformation interpreted this case means that 
we simply take the SWEREF 99 coordinates and regard them as RR 92 
coordinates. The North, East and Up components (in short N, E, U) in table 1 
represent the vector running from the tip of the antenna on Bessel’s ellipsoid to 
the corresponding antenna tip on the 
GRS 80 ellipsoid. The axial directions 
for (N, E, U) is defined by the RR 92 
coordinates on Bessel’s ellipsoid. 

Table 1: Residuals for 0 parameter fit 
(concentric ellipsoids) (unit: metre). 

Topocentric components 
Station 

North East Up 2D 
According to theory of errors, (N, E, 

U) is a vector of observational 
corrections, compare to equation 

ARJE.0 -200.963 -172.885 707.434 265.095 
KIRU.0 -215.782 -191.545 702.039 288.534 

(5-10), 
but in the fit application there is 
ambiguity as to what should be 
improved. In our case one can for 
example ask oneself whether it is the 
transformed SWEREF 99 coordinates 
that should be improved or whether it 
is the RR 92 coordinates that needs 
correcting. In many cases one calls the 
vector components residuals without 
changing their sign. 

OVER.0 -193.129 -210.784 705.912 285.883 
SKEL.0 -178.458 -201.779 710.361 269.373 
VILH.0 -182.570 -165.654 712.106 246.522 
BORA.0 -97.265 -159.096 723.630 186.473 
JONK.0 -96.893 -168.657 723.573 194.509 
SUND.0 -150.196 -183.189 717.170 236.890 
HASS.0 -75.938 -171.236 724.671 187.319 
NORR.0 -105.719 -183.842 722.483 212.072 
ONSA.0 -93.692 -152.141 723.700 178.676 
VANE.0 -110.142 -148.822 722.518 185.147 
KARL.0 -118.826 -158.470 722.096 198.072 
LEKS.0 -134.007 -165.428 720.212 212.896 
LOVO.0 -113.338 -194.270 721.344 224.914 

As seen in table 1, the size of the Up 
component seem reasonable since we 
know that the equatorial radius of the 
Bessel ellipsoid is approximately 740 m 
less than that of GRS 80.  

MART.6 -129.985 -185.447 719.883 226.465 
OSKA.0 -86.534 -186.813 723.872 205.882 
OSTE.0 -168.486 -155.984 714.992 229.605 
SVEG.0 -150.578 -159.589 717.914 219.413 
UMEA.0 -164.617 -193.711 714.041 254.209 
R.m.s. 144.249 176.313 717.524 227.803 

7.2 1-parameter fit 
We further realize from table 1 that if we move the Bessel ellipsoid along the 
normal defined by the barycentre of the common points, so that it approaches the 
surface of the GRS 80 ellipsoid, the Up component will decrease and, thus, the 
quadratic sum of the residuals. We achieve this by performing a fit where the 
topocentric parameter Δz is set free. The results of this can be seen in table 2.  

As expected, the Up component is radically improved, but an improvement is 
also made in North. Let us also take a look at the transformation parameters, 
which in this case become: 
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Topocentric parameters: Table 2: Residuals for 1 parameter fit with free 
translation in topocentric dz (unit: metre).  Translation x: 0.0000000000 (fixed) 

Topocentric components  Translation y: 0.0000000000 (fixed) Station 
North East Up 2D  Translation z: -30.2854252412 

ARJE.0 -81.970 -158.725 -3.776 178.641 
 Rotation x: 0.0000000000 (fixed) KIRU.0 -78.627 -157.191 -5.201 175.759 
 Rotation y: 0.0000000000 (fixed) OVER.0 -76.379 -164.685 -4.316 181.534 

SKEL.0 -78.482 -167.509 -3.089 184.983  Rotation z: 0.0000000000 (fixed) 
VILH.0 -83.518 -162.280 -2.286 182.510  Scale correction:  0.00000000 (fixed)  
BORA.0 -86.311 -181.000  2.814 200.525 

Geocentric parameters: JONK.0 -85.247 -182.516  2.569 201.442 

The value of the estimated topocentric 
parameter dz is -30.285 m, which 
means that the surface of the GRS 80 
ellipsoid as a result of the fit lies around 30 metres below that of the Bessel 
ellipsoid in the area of the topocentre (the barycentre of the common points) of 
the parameters. The geocentric translations compose the vector between the 
origins of the geocentric systems. 

SUND.0 -82.091 -172.235  -.757 190.798  Translation X: -379.4375609537 
HASS.0 -85.175 -187.448  3.681 205.892  Translation Y: -109.3308257612 
NORR.0 -83.236 -182.631  1.602 200.704 

 Translation Z: -603.5274797678 ONSA.0 -87.118 -180.688  3.064 200.593 
 Rotation X: 0.0000000000 VANE.0 -87.200 -176.616  2.188 196.969 

KARL.0 -85.942 -176.145  1.831 195.992  Rotation Y: 0.0000000000 
LEKS.0 -84.793 -173.655   .708 193.251  Rotation Z: 0.0000000000 
LOVO.0 -81.609 -182.152   .911 199.598 

 Scale correction: 0.00000000 MART.6 -82.365 -177.259   .270 195.460 
 Units: metre, arc second and ppm OSKA.0 -83.240 -187.322  2.648 204.985 

OSTE.0 -85.173 -164.340 -1.364 185.100 
SVEG.0 -85.134 -169.034  -.282 189.263 
UMEA.0 -80.170 -170.019 -1.841 187.972 
R.m.s. 83.240 173.903 2.619 192.799 
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7.3 3-parameter fit 
As a next step we perform a 3 
parameter fit with free translations. We 
then get: 

Table 3:Residuals for 3 parameter fit with free 
translations (unit: metre). 

Topocentric components 
Station 

North East Up 2D Topocentric parameters: 
ARJE.0  -4.458  16.989  6.093 17.564 

Translation x:  83.5665813030  KIRU.0  -9.832  21.725 10.196 23.846 

Translation y:  173.1980509464  OVER.0 -12.113  15.884 11.361 19.976 
SKEL.0  -8.941  11.395  8.672 14.485 Translation z: -30.2854252412  
VILH.0  -1.441  11.538  3.346 11.628 

Rotation x: 0.0000000000 (fixed) BORA.0   5.122 -12.133 -7.438 13.170 
Rotation y:  0.0000000000 (fixed) JONK.0   3.265 -11.997 -5.788 12.433 

Rotation z: 0.0000000000 (fixed) SUND.0  -2.813   2.929  2.899  4.061 
HASS.0   3.901 -17.404 -7.792 17.836 Scale correction: 0.00000000 (fixed) 
NORR.0   -.214  -9.209 -2.027  9.211 

Geocentric parameters: ONSA.0   6.644 -13.241 -9.226 14.814 
VANE.0   6.543  -9.005 -7.809 11.131 Translation X: -497.8058422939 
KARL.0   4.195  -6.400 -4.734  7.652 

Translation Y: 36.8071586681 LEKS.0   1.903  -2.021 -1.847  2.776 
Translation Z: -563.3581152987 LOVO.0  -2.691  -6.787   .823  7.301 

MART.6  -1.947  -2.578  1.058  3.231 Rotation  X: 0.0000000000 
OSKA.0    .289 -14.219 -3.600 14.222 

Rotation Y: 0.0000000000 
OSTE.0   1.597   7.269   .175  7.442 

Rotation Z: 0.0000000000 SVEG.0   2.066   2.361 -1.124  3.137 
Scale correction: 0.00000000 UMEA.0  -6.096   7.264  6.209  9.483 

R.m.s.   5.332  11.469  6.104 12.648 

Units: metre, arc second and ppm 

As can be seen, the topocentric 
translations in x and y match the rms 
values for North and East in table 2 
well, which is not wholly unexpected. 
The size of the translation in 
topocentric z is exactly equal in the 1- 
and 3 parameter fits. 

If we study the residuals 
graphically, figure 3, we can see from 
the green vectors that show the 
horizontal residuals, that a clear 
azimuthal rotation between the 
systems remains that was not 
modelled by the 3 parameter fit. One 
can also guess that the topocentre of 
the parameters, that is the barycentre 
of the common points, is somewhere 
to the southeast of Sveg. 

Note that the vector scale in the 
different figures presented in this 

Figure 3: Residuals for 3 parameter fit. Green 
vectors for horizontal residuals and red/blue for 
vertical. 
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study varies between the figures, horizontally as well as vertically. Therefore, one 
cannot simply compare the size of the residuals using the figures. The figures are 
solely there to help see possible patters indicating systematic differences between 
the systems, not handled by the transformation model.   

7.4 4-parameter fit 
To come to terms with the azimuthal rotation we perform a new fit where we 
allow one rotation, around the topocentric z-axis, as well as the three translations. 
The result of this operation is shown in table 4 and figure 4. 

Table 4: Residuals for 4 parameter fit with free 
translations and rotation around the 
topocentric z-axis (unit: metre). 

Topocentric components 
Station 

North East Up 2D 
ARJE.0 -1.102 -.098  6.093 1.106 
KIRU.0 -1.681 -.366 10.197 1.721 
OVER.0 -1.174 -.670 11.362 1.352 
SKEL.0  -.811 -.547  8.673  .979 
VILH.0  -.645 -.106  3.346  .654 
BORA.0  -.083  .060 -7.437  .103 
JONK.0  -.031  .020 -5.787  .037 
SUND.0  -.217 -.311  2.899  .380 
HASS.0   .047  .228 -7.791  .232 
NORR.0   .068 -.107 -2.027  .127 
ONSA.0  -.138  .120 -9.225  .183 
VANE.0  -.060 -.054 -7.808  .081 
KARL.0  -.006 -.116 -4.734  .116 
LEKS.0  -.055 -.142 -1.847  .152 
LOVO.0   .180 -.185   .823  .258 
MART.6  -.008 -.268  1.058  .268 
OSKA.0   .162  .052 -3.599  .171 
OSTE.0  -.392 -.098   .174  .404 
SVEG.0  -.182 -.157 -1.124  .240 
UMEA.0  -.477 -.430  6.210  .642 
R.m.s.   .594  .269  6.104  .652 

As can be seen, the residuals decrease 
considerably in North and East while 
the Up component is unaffected. 

As can be seen, the topocentric 
translations do not change compared 
to the 3 parameter fit. The geocentric 
translations on the other hand are somewhat changed, which is completely in 
order considering that the rotation matrix RTopo in equation 

Figure 4: Residuals from fit with 3 translations 
and rotation around the topocentric z-axis. 
Green vectors for horizontal residuals and 
red/blue for vertical. 

(6-3) ceases to be an 
identity matrix with the rotation around the topocentric z-axis 
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Topocentric parameters: Geocentric parameters: 
 Translation x:  83.5665813031  Translation X: -497.6534618051 
 Translation y: 173.1980509464  Translation Y: 36.2783418898 
 Translation z: -30.2854252412  Translation Z: -563.3581193341 
 Rotation x: 0.0000000000(fixed)  Rotation X: -2.9057790373 
 Rotation y: 0.0000000000(fixed)  Rotation Y: -0.8372266913 
 Rotation z: 6.2909707405  Rotation Z: -5.5165095465 
 Scale correction:  0.00000000 (fixed)   Scale correction: 0.00000000 
 Units: metre, arc second and ppm  

From figure 4 we see that the remaining horizontal residuals in northern Sweden 
are significantly larger than those in the southern part of the country. 
Furthermore, there seems to be a north-to-south tilt between the ellipsoid 
surfaces, since the Up components south of the barycentre have the opposite sign 
of those to the north.   

7.5 5-parameter fit 
The tilt visible in figure 4 can be 
rectified by also allowing a rotation 
around the topocentric y-axis. The next 
step is therefore to perform a fit that 
includes rotation around the 
topocentric y-axis.  

Table 5: Residuals for fit with three 
translations and rotation around the 
topocentric z- and y-axes (unit: metre). 

Topocentric components 
Station 

North East Up 2D 
ARJE.0 -.547  .010 -2.124 .547 
KIRU.0 -.915  .015  -.639 .916 
OVER.0 -.725 -.254  2.942 .768 
SKEL.0 -.492 -.321  2.679 .587 
VILH.0 -.278 -.102 -2.224 .296 
BORA.0  .246  .234 -1.733 .339 
JONK.0  .322  .136  -.092 .349 
SUND.0 -.014 -.291  1.320 .292 
HASS.0  .594  .429   .569 .733 
NORR.0  .364 -.098  2.325 .377 
ONSA.0  .193  .362 -3.051 .411 
VANE.0  .160  .097 -3.729 .187 
KARL.0  .206 -.047 -1.810 .212 
LEKS.0  .141 -.134  -.966 .195 
LOVO.0  .421 -.217  3.942 .474 
MART.6  .191 -.272  2.146 .332 
OSKA.0  .608  .080  3.224 .613 
OSTE.0 -.132 -.149 -3.365 .199 
SVEG.0  .017 -.179 -2.350 .179 
UMEA.0 -.234 -.328  2.393 .403 
R.m.s.  .413  .221  2.416 .469 

Figure 5: Residuals from fit with 3 translations 
round the topocentric z- and y-
tors for horizontal residuals and 

vertical. 

and rotations a
axis. Green vec
red/blue for 
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As expected, the residuals in the Up components are considerably reduced. In 
northern Sweden from just over 10 m to 2-3 m. Rms decreases to a third. The East 
components are the ones that are the least altered, which is natural since the y-
rotation is around an axis oriented in the east-west direction, see figure 2. The 
rms-value of the North components is reduced from 6 dm to about 4 dm.  

Moreover, column 2D of the table as well as figure 5 show that the horizontal 
residuals in northern Sweden have decreased at the expense of those in the 
south. Visible in the figure is also a trend that the horizontal error vectors in the 
south point to the north and those in the north to the south. The length of the 
vectors grow with the distance from the barycentre. This indicates a scale 
difference that has not been modelled. 

Another trend that is now more clearly seen is that the Up components in the 
west have the opposite sign of those in the east. This suggests a tilt between the 
ellipsoid surfaces in the east-west direction, which means that a rotation around 
the topocentric x-axis is needed. 

We shall also have a look at the parameters in this case. 

Topocentric parameters: Geocentric parameters: 
 Translation x: 83.7598521439  Translation X: -419.6034892653 
 Translation y: 173.1980450421  Translation Y:  58.7696070963 
 Translation z: -30.2854266534  Translation Z:  -608.1837657355 
 Rotation x: 0.0000000000 (fixed)  Rotation X: -3.7451134820 
 Rotation y: -3.0142533647  Rotation Y:  2.0578150035 
 Rotation z: 6.3012847571  Rotation Z:  -5.5255071173 
 Scale correction:  0.00000000 (fixed)  Scale correction: 0.00000000 
 Units: metre, arc second and ppm  

The change in the topocentric parameters compared to the 4 parameter fit is 
minute. The geocentric parameters, on the other hand, change considerably. The 
change in the rotations is no surprise since the newly added rotation around the 
topocentric y-axis naturally is divided among all three axial rotations in the 
geocentric parameters. The geocentric translations are changed with 20-80 m. 
Studying equation (6-3) that is not unreasonable considering a rotation of 1 arc 
second moves the points up to 30 m.  

We now continue with a fit with three translations and rotations around all 
three axes. 

7.6 6-parameter fit 
We begin by looking at the residuals. 

The rotation around the topocentric x-axis causes a decrease of the error in the 
Up component of almost 20 times, with the rms dropping from 2.42 m to 0.13 m. 
One may guess that this rotation is related to defects in the handling of the geoid 
in RT 90, since we know from other studies that the geoid has a clear tilt in the 
east-west direction.  
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In the horizontal components there is only a marginal improvement. 

Table 6: Residuals for fit with three 
translations and rotation around the 
topocentric z-, y- and x-axes (unit: metre). 

 

 

 

 

Again, the change of the topocentric translations compared to the previous fit is 
only slight. Nor is the rotation around the topocentric z-axis much affected. The 
possibility of rotation around the topocentric x-axis has effect also on the rotation 
around the y-axis. 

Topocentric components 
Station 

North East Up 2D 
ARJE.0 -.647 -.162 -.204 .667 
KIRU.0 -.724 -.594 -.236 .937 
OVER.0 -.367 -.405 -.054 .547 
SKEL.0 -.358 -.209  .012 .414 
VILH.0 -.436  .040  .023 .438 
BORA.0  .406  .142 -.028 .430 
JONK.0  .349  .044 -.066 .352 
SUND.0 -.110  .036  .124 .116 
HASS.0  .658 -.079 -.103 .662 
NORR.0  .201 -.020 -.110 .202 
ONSA.0  .484  .211 -.143 .528 
VANE.0  .364  .216 -.132 .423 
KARL.0  .253  .152  .235 .295 
LEKS.0  .078  .180  .168 .197 
LOVO.0  .190  .000 -.042 .190 
MART.6  .052  .031  .030 .060 
OSKA.0  .393 -.135 -.102 .415 
OSTE.0 -.299  .161 -.116 .340 
SVEG.0 -.082  .180  .005 .198 
UMEA.0 -.244 -.065  .197 .252 
R.m.s.  .384  .206  .129 .436 

Figure 6:
and rotations a
x-axis. Gree
and red/blue fo

 Residuals from fit with 3 translations 
round the topocentric z- , y- and 

n vectors for horizontal residuals 
r vertical. 

Topocentric parameters: Geocentric parameters: 
 Translation x: 83.6624623462  Translation X: -416.3877417780 
 Translation y: 173.5181699139  Translation Y: -100.2165160226 
 Translation z: -30.2854294630  Translation Z: -585.5944844559 
 Rotation x: 4.9926229146  Rotation X: 0.9069425078 
 Rotation y: -1.4952101782  Rotation Y: 1.8174190607 
 Rotation z: 6.2479875359  Rotation Z: -7.8786778950 
 Scale correction:  0.00000000 (fixed)  Scale correction: 0.00000000 
 Units: metre, arc second and ppm  
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As can be seen, the geocentric parameters have once again been the subject of a 
dramatic rearrangement.  

Looking at the residuals graphically, figure 6, there is no longer a significant 
unmodelled tilt between the ellipsoid surfaces. However, a certain systematic is 
discerned in the vertical residuals. The scale effect in the horizontal components 
naturally remains, and we continue with the next step of our study. 

7.7 7-parameter fit 
In this case it can be briefly mentioned that the translations and rotations change 
only minutely compared to the 6 parameter fit, regarding both the topocentric 
parameters as well as the geocentric. The value of the estimated scale correction 
is 1.01032050 ppm. 

As will be shown in a later section there are in certain circumstances a very 
strong correlation between the scale correction and the topocentric shift dz. 

Table 7:  Residuals from fit with 3 
translations,  3 rotations and scale correction  
(unit: metre).  

Topocentric components 
Station 

North East Up 2D 
ARJE.0 -.083 -.052 -.164 .097 
KIRU.0  .006 -.325 -.175 .325 
OVER.0  .180 -.044 -.007 .185 
SKEL.0  .037  .060  .044 .070 
VILH.0 -.051  .066  .048 .084 
BORA.0  .003 -.030  .000 .030 
JONK.0 -.048 -.065 -.039 .081 
SUND.0 -.003  .122  .139 .122 
HASS.0  .075 -.207 -.062 .220 
NORR.0 -.100 -.010 -.090 .101 
ONSA.0  .042 -.013 -.110 .044 
VANE.0  .068 -.002 -.108 .068 
KARL.0  .045  .013  .253 .047 
LEKS.0  .016  .116  .182 .117 
LOVO.0 -.028  .095 -.024 .099 
MART.6 -.025  .095  .044 .098 
OSKA.0 -.079 -.139 -.071 .160 
OSTE.0 -.056  .096 -.097 .111 
SVEG.0  .001  .106  .020 .106 
UMEA.0  .011  .121  .218 .121 
R.m.s.  .064  .116  .119 .132 

 
Figure 7: Residuals from fit with 3 translations,  
3 rotations and scale correction. Green vectors 
for horizontal residuals and red/blue for vertical. 
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Studying the size of the residuals in table 7, we once again see a substantial 
decrease in the horizontal components.  Rms for North drops from 0.384 m to 
0.064 m and for East from 0.206 m to 0.116 m. The effect on the Up component is 
smaller. 

When looking at the graphic image of the horizontal residuals, one may notice 
two whirls, one anti-clockwise for the northern points and one clockwise for the 
southern ones. 

So far, all fits have been made with equal weights on all included components. 
Studying table 7, there is nothing directly indicating that for example the Up 
component would pose a problem, on the contrary, the residuals in this 
component are surprisingly small. The only disturbing factor is that the 
horizontal accordance still does not match the expected accuracy of RT 90 
considering the strength of the adjusted triangulation net, together with the nets 
of the surrounding Nordic countries, including about 3800 points within Sweden 
in a homogenous net with sides of 10 km. Moreover, considering that the points 
in the network are connected by around 15000 distance- and 1500 direction 
measurements and where the expected accuracy between adjacent points was 
estimated to 1-2 cm, it is surprising that the fit to the SWEREF systems show 
discrepancies of over 30 cm. 

As implied in a previous section there were certain problems in the geodetic 
definition of RT 90. Evidently, the standard version of the 7 parameter fit cannot 
cope with modelling the deformation, possibly caused by the flaws in the 
geodetic definition. An analysis of the problem points primarily in the direction 
of the cause being systematic errors in the geoid model used. As a next step we 
shall therefore perform a fit where the constraint in height is removed. We 
accomplish this by assigning a higher à priori standard deviation to the height 
components. With the height constraint gone we introduce a strong correlation 
between the topocentric translation dz and the scale correction δ. To avoid an ill-
conditioned equation system we therefore fix δ to the value 0. We will take a 
closer look in the relation between scale and height translation in a later section. 
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7.8 Weighted fit without height constraint 
(Appendix 1 contains the complete result file of the fit) 

Table 8: Residuals for fit with three 
translations and three rotations, but without 
height constraint (unit: metre). 

 

 

 

We see that it is primarily the parameters for the translation in topocentric z and 
the rotations around the topocentric x- and y-axes that have changed. The change 
in the z-translation is about 6 m, which compensates for the scale correction of 1 
ppm observed before. 

Topocentric components 
Station 

North East Up 2D 
ARJE.0 -.0357  .0232 -7.9041 .0426 
KIRU.0 -.0389 -.0723 -7.5773 .0820 
OVER.0  .0508  .0431 -5.9735 .0667 
SKEL.0 -.0188  .0369 -5.8436 .0414 
VILH.0  .0036  .0199 -7.5933 .0202 
BORA.0 -.0505  .0267 -6.5201 .0571 
JONK.0 -.0517 -.0144 -5.9488 .0537 
SUND.0  .0191  .0077 -5.9215 .0206 
HASS.0  .0764  .0030 -5.4994 .0765 
NORR.0 -.0403 -.0331 -5.2133 .0522 
ONSA.0 -.0580  .0719 -7.0300 .0924 
VANE.0 -.0114 -.0233 -7.4501 .0259 
KARL.0  .0209 -.0453 -6.6183 .0499 
LEKS.0  .0286  .0088 -6.5250 .0299 
LOVO.0  .0506  .0168 -4.6851 .0533 
MART.6  .0155 -.0115 -5.4631 .0193 
OSKA.0  .0141 -.0534 -4.6677 .0552 
OSTE.0 -.0046 -.0144 -7.9372 .0151 
SVEG.0  .0245 -.0193 -7.3052 .0312 
UMEA.0  .0026  .0348 -5.6617 .0349 
R.m.s.  .0369  .0349  6.4462 .0508 

Figure 8: Residuals from fit with 3 translations 
and 3 rotations but without height constraints. 
The vectors show the horizontal residuals. 

Topocentric parameters: Geocentric parameters: 
 Translation x: 83.6859793085  Translation X: -414.0978562888 
 Translation y: 173.4068423468  Translation Y: -41.3381702518 
 Translation z: -36.6385863800  Translation Z: -603.0627127551 
 Rotation x: 3.1751605455  Rotation X: -0.8550428002 
 Rotation y: -2.2943202986  Rotation Y: 2.1413464567 
 Rotation z: 6.2681584553  Rotation Z: -7.0227212665 
 Scale correction:  0.00000000 (fixed)  Scale correction: 0.00000000 
 Units: metre, arc second and ppm  
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From table 8 we can see that the residuals are now approaching a level more 
closely coinciding with the expected accuracy of RT 90. Of course, this is at the 
expense of the Up component, but as we shall see from the discussion further 
ahead, this is also not a problem. A small cosmetic flaw in this context is that the 
largest horizontal residual is in Onsala, the most renowned of the geodetic 
stations in the country.  

An inherent weakness of all comparisons done on the rms values is that they 
do not take into consideration that the number of over-determinations decreases 
at the same rate as the number of estimated parameters grows. Comparing rms 
from the standard fit of 7 parameters with the one without height constraint, in 
the first case 60 equations are used to estimate 7 parameters while in the latter 
case 40 equations determines 6 parameters. Even with regard to that, the fit 
without height constraint led to a significant improvement of the horizontal 
accordance. 

In figure 8, a prominent vector pattern for the 6 southernmost stations 
indicates a diverging scale for the south part of the country. This is not entirely 
implausible since the south part of the country is primarily surveyed with the 
microwave instrument Tellurometer, while from the valley of Mälaren and north 
Geodimeter has been used, an instrument that measures with visible light. It is a 
known fact that there is a scale difference between these instrument types. 
Obviously the attempt, made in connection with the adjustment that formed the 
basis of RT 90, to correct for this scale difference was not entirely successful. In a 
minor study, not presented in any detail here, a fit without height constraint 
based on the 6 southern stations gives a standard deviation of 18 mm (2D, 1σ).  

7.9 The effect of the scale factor in 3 dimensions 
In this section we will investigate the influence of scale on our coordinates. We 
begin by studying what happens in 3-dimensional space.  

We start with the RR 92 coordinates for the 20 SWEPOS stations. As a first step 
we perform a 3D Helmert transformation with all parameters set to 0 except for 
the scale correction which is set to 1 ppm. Then we subtract the original 
coordinates from the transformed. The result is shown in table 9. 

The 3D re-scaling means all points move away from each other. Seen from the 
origin of the Cartesian system, which is in the centre of the ellipsoid, all stations 
are moved outwards radially. Since the distance of the points to the origin is 
roughly 6360 km they will end up roughly 6.36 m above the ellipsoid surface. 
Because of flattening, the radial direction somewhat diverges from the direction 
of the normal in each point, which explains the difference of 15-20 mm in 
latitude.  
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Thus, 3D re-scaling primarily changes 
the heights of the points above the 
ellipsoid. The latitude is minutely 
changed and the longitude remains 
completely unaltered. The conclusion is 
that the scale in a system is affected by 
the height above the ellipsoid assigned 
to the points. Consequently, an 
erroneous geoid model can cause errors 
in scale.   

Table 9: Difference between 3D coordinates 
that has a scale changed by 1 ppm minus the 
original coordinates (unit: metre). 

Topocentric components 
Station 

North East Up 
ARJE.0 -.016 .000 6.360 
KIRU.0 -.015 .000 6.360 
OVER.0 -.016 .000 6.360 
SKEL.0 -.016 .000 6.360 
VILH.0 -.017 .000 6.360 

It should be pointed out that the 
global systems, such as SWEREF 99, 
ITRF and so on, in this context can be 
regarded as error-free. It is the 
conventional systems, such as RT 90 
and ED 87 among others, that can 
possibly be afflicted with scale errors 
and defects in the geoid model.  

BORA.0 -.019 .000 6.362 
JONK.0 -.019 .000 6.362 
SUND.0 -.018 .000 6.361 
HASS.0 -.020 .000 6.363 
NORR.0 -.019 .000 6.362 
ONSA.0 -.019 .000 6.362 
VANE.0 -.019 .000 6.362 
KARL.0 -.019 .000 6.362 
LEKS.0 -.018 .000 6.362 
LOVO.0 -.019 .000 6.362 

When performing a 3D Helmert fit 
between a global system and a 
conventionally defined system using 
the same weight on all observation 
equations, a possible scale difference is 
modelled by a scale correction.  

MART.6 -.018 .000 6.361 
OSKA.0 -.019 .000 6.362 
OSTE.0 -.017 .000 6.361 
SVEG.0 -.018 .000 6.361 
UMEA.0 -.017 .000 6.360 

When performing a 3D Helmert fit without height constraint one can choose 
to fix the scale correction to 0. Firstly, one gets the best possible accordance of the 
horizontal coordinates and secondly, the ellipsoid is placed relative to the earth 
surface in such a way as to eliminate the scale error. Then, the height residuals 
can be used to modify an incorrect geoid model. Note that this is true either the 
scale error is caused by an incorrect geoid model or by faults in distance 
measuring instruments or in the facilities used for calibration of distance 
measurement techniques. 

In other words, the system has been given a more correct definition without 
having to change the coordinates. With the improved definition, distances, for 
example, can be reduced to the ellipsoid without the need to apply a scale 
correction.   

7.10 The effect of the scale factor in 2 dimensions 
We start off from the geodetic RR 92 coordinates of the SWEPOS stations. As a 
first step they are projected with Gauss-Krüger’s projection to 2.5 gon V, but 
instead of the x/y additions (0/1500000) we use (-6500000/0). This places the 
origin of the projected coordinates on the central meridian some ten kilometres 
south of Finspång. The next step is to re-scale the planar coordinates and then 
change them back to latitude, longitude and height above the Bessel ellipsoid 
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again. As in the 3D case, we take the difference between the geodetic coordinates 
with changed scale and the original ones, see table 10.  

Table 10: Difference between coordinates with 
a scale change of 1 ppm in the projection plane 
and corresponding original coordinates (unit: 
metre).  

Topocentric components 
Station 

North East Up 2D 
ARJE.0  .856  .136 .000  .866 
KIRU.0 1.018  .308 .000 1.064 
OVER.0  .834  .407 .000  .928 
SKEL.0  .685  .306 .000  .750 
VILH.0  .677  .044 .000  .678 
BORA.0 -.104 -.170 .000  .199 
JONK.0 -.099 -.101 .000  .142 
SUND.0  .401  .108 .000  .415 
HASS.0 -.284 -.121 .000  .309 
NORR.0 -.004  .026 .000  .026 
ONSA.0 -.143 -.225 .000  .267 
VANE.0  .002 -.219 .000  .219 
KARL.0  .089 -.133 .000  .160 
LEKS.0  .233 -.054 .000  .240 
LOVO.0  .077  .117 .000  .141 
MART.6  .219  .085 .000  .235 
OSKA.0 -.173  .012 .000  .173 
OSTE.0  .536 -.055 .000  .539 
SVEG.0  .378 -.064 .000  .383 
UMEA.0  .546  .216 .000  .587 

 

The table shows how much the points 
have been moved relative to the point 
south of Finspång. Obviously, the 
heights are not affected. 

Figure 9: Difference between planar coordinates 
with the origin just south of Finspång, with a 

nge of 1 ppm, and corresponding 
original coordinates. 
scale cha

If we perform a 3D Helmert fit between the coordinates re-scaled in the 
projection plane and the original coordinates, the scale change will be modelled 
by the transformation so that the discrepancy < 1 mm in the horizontal 
components (latitude and longitude) where the scale change is 1 ppm. However, 
because of different metrics in the projection plane compared to 3-dimensional 
space, the 3D Helmert fit will not be able to fully model the difference in scale. 
The divergence grows with the size of the scale difference and amounts to 0-5 
mm at a scale difference of 10 ppm.   

7.11 How does the fit work without height constraint? 
Before we proceed to discuss and conclude the results of the different studies of 
the Helmert fit carried out, we shall for a moment return to our antennae-
equipped ellipsoids. 
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Each antenna tip is in a position given by the geodetic coordinates (ϕ, λ, h) for 
each ellipsoid. Performing a fit with equal weight for all observation equations 
means that the positions of the ellipsoids are modified relative to each other so 
that the sum of the squares of the distances between the antennae tips is 
minimized. In the examples, the fit has always meant computation of parameters 
for transformation from SWEREF 99 to RR 92. Studying equation (5-10), 
representing the three observation equations for the ith point, we see that the 
vector of observational corrections (residual vector) v is expressed in the 
topocentric system on Bessel’s ellipsoid whose origin has the RT 90 coordinates 
(ϕi, λi). The vector has its starting point in the antenna tip on Bessel’s ellipsoid 
and its end point, after the fit is performed, coincides with the corresponding 
antenna tip on GRS 80, see figure 10a. 

What happens when we let go of the height constraint? As before, the vector 
of observational corrections runs from antenna tip to antenna tip, but now the 
length of the vector is insignificant; what is minimized is the sum of the squares 
of the horizontal components of the vectors or, differently put, for each antenna 
tip on the GRS 80 ellipsoid we measure the distance to the line that coincides 
with the antenna on Bessel’s ellipsoid. A fit with no height constraint means that 
we minimize the sum of the squares of all these distances, se figure 10b. 

Bessel 

GRS 80 

a) 

Bessel 

GRS 80 

b) 
 Relation with height constraint a) and without height constraint b), respectively. Figure 10:

7.12 Discussion of the results 
As mentioned in one of the previous sections, we are primarily interested in 
transforming the horizontal coordinates. The disadvantage of the prevalent 
procedure for computing the seven parameters is that all observation equations 
are given the same weight. The fit in height comes at the cost of the horizontal fit. 
Re-formulating the observation equation according to equation (5-10) solves this 
problem.  
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The method of estimating topocentric parameters increase our understanding of 
how the 3D Helmert works. For example, we see that the previously estimated 
parameters change moderately when more parameters are gradually added in 
the estimate. The geocentric parameters, on the other hand, are massively 
changed. Intuitively it is easy to see that a small rotation around the topocentric 
x- or y-axis leads to a substantial change in the relative position of the ellipsoid 
centres, which is equivalent to a change in the geocentric translations. A rotation 
of one arc second changes the position with around 30 m. It is common when 
presenting the parameters to also state the standard deviation for each 
parameter. The author’s opinion is that this information is of no interest and 
often quite misleading. If repeated fits are performed within the same area, but 
based on different common points, the divergence of the parameters may greatly 
exceed the stated standard deviations. On some occasion this led to the results of 
a surveying campaign being wrongly questioned.  

As stated earlier, erroneous entered heights can in a coordinate transformation 
cause errors in the horizontal position, because of the ellipsoids not being 
parallel. We have also confirmed that the transformation should not be used 
outside the area defined by the common points. We primarily had the horizontal 
distribution of the points in view, but the same principle is of course valid 
vertically. The vertical side brings an interesting issue. The common points are 
generally triangulation points and are therefore usually situated on mountain 
tops while the points one wishes to transform are situated down in the 
communities. As an extreme case one can imagine an alpine village at 1000 m 
height surrounded by 2000-3000 m high Alps. A fit without height constraint 
would in this case give parameters that minimize the sum of the squares of the 
residuals at the level of the Alps, compare to figure 10b. The conclusion of this is 
that one should perform the fit with the heights of the global system (the from-
system) set to 1000 m. A more general approach is to always set the heights of the 
global system to 0. In principle, this procedure can be applied for all fits without 
height constraint. One then gets parameters that minimize the residuals at the 
surface of the GRS 80 ellipsoid. Also when transforming remaining points, the 
heights of the global system should be set to 0. If one wishes to perform the 
transformation in the opposite direction, the local heights should really be set to 
the distance between the ellipsoid surfaces in each point, but since these 
distances generally are small, amounting to some tens of metres, setting the 
entering heights to 0 will suffice here as well.  

A fit without height constraint minimizes the horizontal residuals. Does that 
mean that this method should always be used? The answer is no. Simply put, one 
may say that the method should only be used if it significantly reduces the 
horizontal residuals. What primarily happens when the height constraint is 
removed is that one allows larger rotations around the topocentric x- and y-axes. 
This causes a tilt between the ellipsoid surfaces compensating for systematic 
height errors, for example induced by defects in the geoid model. The change in 
the horizontal coordinates caused by such systematic errors in the height model 
is moderate. The problem when performing a fit without height constraint is that 
the method of least squares cannot distinguish if the residuals are caused by 
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systematic errors or by pure measurement errors in the triangulation net. If the 
measurement noise is at a higher level than the systematic errors, there is a risk 
that the topocentric rotations are trying to compensate for errors in the 
coordinates of individual points caused by measurement errors. This is 
particularly the case if the number of common points is small and/or the area of 
the fit is small. For national systems, such as RT 90 and the Finnish KKJ, with a 
large coverage area with many common points of good quality, the probability of 
the fit modelling possible systematic errors related to the definition of the system 
is high.  

We now leave the 3D Helmert transformation and instead occupy ourselves 
with the following question. 

8 Projection fit  

8.1 Background 
As mentioned in the introduction, the municipalities in Sweden use grid systems. 
How the systems were established varies, but very few have a geodetic definition 
that make it possible to directly convert the x/y grid coordinates to latitude and 
longitude, which causes considerable problems when creating a transformation 
to SWEREF 99. 

One of the reasons for the RIX 95 project was to estimate transformation 
parameters between the municipal systems and the national systems RT 90 and 
SWEREF 99. A special group was formed solely to handle the question of how 
these sets of transformation parameters were to be produced. The conclusions of 
the group were that the transformations should be as accurate as possible, 
involve as few steps as possible and use standard methods implemented in most 
software for geodesy- and GIS applications, something not entirely easy to 
achieve.   

An investigation of the market showed that most software could do 
Transverse Mercator projection in both directions as well as 3D Helmert 
transformation. Surprisingly, 2D Helmert transformation was for the most part 
lacking. 

A way to establish transformation parameters without involving 2D Helmert 
transformation was to use a method, developed a few years previously, based on 
the Transverse Mercator (TM) projection that was called projection fit. The idea 
of this approach emanated from Ilmar Ussisoo. What he did was to project (φ, λ) 
in ED 50 to (x, y) on Hayford’s ellipsoid with central meridian 15°48'23.0", after 
which he fitted the results to RT 38 2.5 gon V with a 2D Helmert transformation. 

Since the TM projection contains the possibility of re-scaling and false 
northing and easting, which in principle corresponds to scale and translations in 
2D Helmert transformation, it gave inspiration to try to find projection 
parameters, directly giving grid coordinates, that as well as possible coincided 
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with RT 90 2.5 gon V, without applying a 2D Helmert transformation. In the 
beginning this was done by trial and error; one guessed an appropriate value for 
the central meridian, transformed and performed a Helmert fit. Then the scale 
and translation parameters from the fit were used as projection parameters in a 
new computation round where the longitude of the central meridian was 
adjusted. This procedure was repeated until the results were probably good. 
Compared to Ilmar Ussisoo’s method the result was worse. This led to the 
abandonment of the half-manual computing and instead a Fortran programme 
was written to solve for all projection parameters at the same time according to 
the method of least squares and thus, the method of projection fit was born. That 
Ussisoo’s approach was not sufficient depended on the fact that 2D Helmert 
transformation was not implemented in some GPS equipment and one wanted 
the possibility to offer a transformation for all hand-held GPS receivers, so that 
one could easily get a position that could be found on the map.   

We shall now look at this method more closely. 

8.2 Representation (ϕ,λ)  →  (x,y) based on 

Transverse Mercator projection according to the 

formulas of Gauss-Krüger 
The idea is, therefore, to transform coordinates between two geodetic reference 
frames with the help of a projection computation, where the parameters of the 
projection is decided by an iterative procedure analogous to that used for 3D 
Helmert fit. The method is implemented for Transverse Mercator projection, but 
should be possible to apply also for other projections. We begin by describing in 
detail the representation from the (ϕ, λ) of the ellipsoid surface to the (x, y) of the 
projection plane according to the method of Gauss-Krüger. 

Symbols and definitions: 

a semi-major axis of the ellipsoid 

f flattening of the ellipsoid 

e2 first eccentricity squared 

ϕ geodetic latitude, positive direction North 

λ geodetic longitude, positive direction East 

x grid coordinate, positive direction North 

y grid coordinate, positive direction East 

λ0 longitude of the central meridian 

k0 scale factor along the central meridian 

x0 false northing 

y0 false easting 
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All angles (latitude, longitude and so on) should be expressed in radians. Note 
that the x-axis points to the North and the y-axis to the East. 

From the ellipsoid parameters a and f the following entities are computed: 

2 (2 )e f f= −  

2
f

n
( f

=
− )

 

2 41 1ˆ 1  
(1 ) 4 64

aa n n
n
⎛ ⎞= + + +⎜ ⎟+ ⎝ ⎠

K  

 latitude ϕ* Compute the conform*

( 2 4 6* sin cos sin sin sinA B C Dϕ = ϕ− ϕ ϕ + ϕ+ ϕ+ ϕ+K)  (8-1) 

where the coefficients A, B, C, and D are obtained from the formulas: 

 2A e=

( )4 61 5
6

B e e= −  

( )6 81 104 45
120

C e e= − K+  

( )81 1237
1260

D e= +K  

Define ξ´ and η´ as 

0arctan(tan * /cos( ))′ξ = ϕ λ −λ  (8-2) 

0arctanh(cos * sin( ))′η = ϕ λ −λ  (8-3) 

One then obtains 

0 1 2

3 4

ˆ( sin 2 cosh 2 sin 4 cosh 4
sin 6 cosh 6 sin 8 cosh 8 )

x k a
x

′ ′ ′ ′ ′= ξ +β ξ η +β ξ η +
′ ′ ′ ′+ 0β ξ η +β ξ η + +K

 (8-4) 

0 1 2

3 4

ˆ( cos 2 sinh 2 cos 4 sinh 4
cos6 sinh 6 cos 8 sinh 8 )

y k a

0y
′ ′ ′ ′ ′= η +β ξ η +β ξ η +

′ ′ ′ ′+ β ξ η +β ξ η + +K
 (8-5) 

                                                                                                                                               

*
 Older Swedish literature calls this quantity isometric latitude (isometrisk latitud). Today, the term 

isometric latitude is used for the quantity . 

The isometric latitude is computed from the conform latitude according to the formula 

/2ln{tan( /4 /2)[(1 sin )/(1 sin )] }ee eψ = π +ϕ − ϕ + ϕ

)2/*4/tan(ln ϕ+π=ψ . Compare with John P. Snyder: Map Projections - A Working Manual, 

U.S. Geological Survey Professional Paper 1395. 
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where the coefficients  are computed as 4321 och   , , ββββ

2 3 4
1

1 2 5 41
2 3 16 180

n n n nβ = − + + +K  

2 3 4
2

13 3 557
48 5 1440

n n nβ = − + +K  

3 4
3

61 103
240 140

n nβ = − +K  

4
4

49561
161280

nβ = +K  

8.3 Projection fit based on Transverse Mercator 

projection with the formulas of Gauss-Krüger 

Given: A number of points with known geodetic coordinates (ϕ, λ). We also know the 
coordinates (x, y) in a grid system. 

Sought: A Transverse Mercator projection (or, shorter, TM projection) that converts the 
given (ϕ, λ) values into grid coordinates (x, y) that coincides with the given (x, y) 
values. 

To perform a TM projection one needs to specify the semi-major axis (a) and 
flattening (f) of the ellipsoid used, the longitude of the central meridian (λ0), the 
scale along the central meridian (k0) and the false Northing and Easting (x0) and 
(y0). We assume that the ellipsoid parameters a and f are known. 

Note that the ellipsoid parameters are always got from the system with the given (ϕ, λ) 
values. 

We regard x and y as functions of the projection parameters according to the 
following x=x(λ0, k0, x0, y0) and y=y(λ0, k0, x0, y0). As usual we do a Taylor series 
expansion around the approximate values (λ0), (k0), (x0), (y0). The observation 
equations then become 

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

x(( ),( ),( ),( )) ( ) ( ) ( ) ( )x
x x x xx v k x y k x y

k x y
∂ ∂ ∂ ∂

+ = λ + Δλ + Δ + Δ + Δ
∂λ ∂ ∂ ∂ 0  (8-6) 

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

y(( ),( ),( ),( )) ( ) ( ) ( ) ( )y
y y y y

y v k x y k x y
k x y

∂ ∂ ∂ ∂
+ = λ + Δλ + Δ + Δ + Δ

∂λ ∂ ∂ ∂ 0  (8-7) 

where , , and 0kΔ 0xΔ 0yΔ0Δλ  are unknown corrections to the approximate values 
and vx and vy are the residuals of the observed (known) values x and y. 

We shall now derive expressions for the partial derivatives. We use the 
formulas of Gauss-Krüger according to equations  and (8-4) (8-5) above and get 

0 0 0ˆ  f( ´( ), ´( ))x k a x= ξ λ η λ + 0  (8-8) 
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0 0 0ˆ  g( ´( ), ´( )) 0y k a y= ξ λ η λ +  (8-9) 

The partial derivatives are 

0 0

x xˆ f                   1                  
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 (8-10) 

0 0 0
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∂ ∂
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  (8-11) 
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According to equations (8-4), (8-5), (8-8) and (8-9) we get 

4

1
f( , ) sin 2   cosh 2  i

í
i i
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′ ′ ′ ′ ′ξ η = ξ + β ξ η +∑ K  (8-14) 

4

1
g( , ) cos 2   sinh 2  i

í
i i

=

′ ′ ′ ′ ′ξ η = η + β ξ η +∑ K  (8-15) 

Four terms in the series expansion is more than enough for millimetre precision.  

From equations (8-14) and (8-15) we get 

4
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Comment: If we compare equations (8-16) and (8-17) to (8-18) and (8-19), we see that 
(8-16) and (8-19) are identical. The same is true for (8-17) and (8-18) except for the 
sign, that is 

     and    
f g f∂ ∂ ∂ ∂
= =
′ ′ ′∂ξ ∂η ∂η ∂ξ

g
−

′
 

This is a general relation that is valid for all conformal representations and is 
commonly called the differential equations of Cauchy-Riemann. 
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Finally, from equations (8-2) and (8-3) after some manipulation of the 
formulas we get the numerically well-behaved formulas 

0
2 2 2

0 0

sin *cos *sin( - ) 
sin * cos *cos ( - )

′ ϕ ϕ λ λ∂ξ
= −

∂λ ϕ + ϕ λ λ
 (8-20) 

0
2 2 2

0 0

cos *cos( - ) 
sin * cos *cos ( - )

′ ϕ λ λ∂η
= −

∂λ ϕ + ϕ λ λ
 (8-21) 

With one exception, we now have all the information needed to form the 
observation equations. What is missing is approximate values for the unknowns 
prior to the first iteration. Since the false northing and easting, x0 and y0, are 
linear parts of equations (8-8) and (8-9), the approximate values for them can be 
set to 0, but tests show that 0 is good enough also for λ0. If one wishes to improve 
the convergence λ0 can be set to the average of the smallest and the largest 
longitude of the common points. For k0, a suitable choice is 1.  

The corrections of the parameters are solved for in the over-determined linear 
equation system with the method of least squares, after which they are added to 
the approximate values before the next iteration. Normally, the procedure has a 
rapid convergence.  

8.4 Discussion of the usability of the method 
There are mainly two factors that limit usability.  

The grid coordinates must originate from a TM projection. Different 
projections deform the representation in the projection plane differently. In the 
TM projection the deformations grow with the distance to the central meridian, 
while in, for example, Lambert’s projection they grow with the distance to the 
standard parallels. For very small areas (a few kilometres at most) a grid system 
with Lambert geometry can be approximated by a TM projection but, as said, the 
errors grow very rapidly with the size of the area.  

The x-axis of the local system must be parallel with the representation of the 
central meridian. The latter means, for example, that if the local system is 
regarded as originating from 5 gon V, then the local x-axis should be parallel 
with the x-axis in 5 gon V. Studies carried out show that bad orientation of the 
local system makes a good fit between projected and local coordinates 
impossible. The residuals are proportional to the rotation and grow linearly with 
the size of the coverage 
area of the local system. 
See table 11. 

Table 11: Errors in metre caused by rotation of the local system.  
1 2 10 100 1000 10000 

 
mgon mgon mgon mgon mgon mgon Apart from errors 

caused by the local 
system not having TM 
geometry or by it being 
rotated, there are discre-

1*1 km2 0,000 0,000 0,000 0,000 0,000 0,004 

10*10 km2 0,000 0,000 0,000 0,003 0,031 0,305 

50*50 km2 0,001 0,002 0,008 0,077 0,770 7,700 

100*100 km2 0,003 0,006 0,031 0,308 3,080 30,080 
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pancies caused by scale differences in the definition of the reference frames (the 
curvature of the ellipsoids etc). These effects grow with the size of the area. 
Current studies indicate that the effect on Sweden as a whole does not exceed 1-2 
dm. For smaller areas, (50 * 50 kilometres), the error is probably less than 1 
millimetre. 

In conclusion, it can be said that, concerning the municipal systems, what 
primarily causes problems are defects in the orientation. The threshold is 
somewhere around 1-5 mgon. Unfortunately, it appears that some 
municipal/local systems have a rotation amounting to several gon. For these 
systems it is necessary to also consider the rotation. We then need to combine the 
projection fit with either a planar or a 3-dimensional Helmert transformation, 
(2D/3D Helmert). If we use a 2D Helmert transformation, the estimate of the 
Helmert parameters can be done in the same least squares fit as the projection 
parameters. In the next section we run through how the observation equations 
are set up in this case.   

9 Projection fit combined with a planar 
Helmert transformation  

Since both the TM projection and the 2D Helmert transformation include a scale 
factor and shifts in the x- and y-coordinates, certain confusion arises when 
naming the entering variables. For the TM projection we keep all names of 
variables from the previous section, with the exception of renaming the 
coordinates obtained from the left-hand side of equations (8-14) and (8-15) x´ and 
y´. These are the coordinates that are to be further transformed with the planar 
Helmert transformation. Like 3D Helmert transformation, 2D Helmert 
transformation is a similarity transformation, but because it works in two 
dimensions we only get four parameters; a scale factor (sH), a rotation (α), and 
two translations (x0H and y0H). We use the following formula to describe the 
planar Helmert transformation 

0H

0H
H

x x x
s

y y y
′⎛ ⎞⎛ ⎞ ⎛ ⎞

= + ⎜ ⎟⎜ ⎟ ⎜ ⎟ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠
R  (9-1) 

where R is a rotation matrix defined as the following 

cos sin
sin    cos

α − α⎛
= ⎜ α⎝ ⎠

R ⎞
⎟α

 (9-2) 

The final coordinates x and y are now functions of eight parameters, x=x(λ0, k0, x0, 
y0, sH, α, x0H, y0H) and y=y(λ0, k0, x0, y0, sH, α, x0H, y0H).  

The observation equations are set up analogous to equations (8-6) and (8-7), but 
with the difference of adding the terms for ΔsH, Δα, Δx0H and Δy0H. The partial 
derivatives are also somewhat modified 
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The partial derivatives for x' and y' with respect to k0 and λ0 above are obtained 
by equations (8-10), (8-11) and (8-12), (8-13). 

For the new parameters we get 
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As before, the parameters are computed with the method of least squares by 
solving for corrections to approximate values of the sought parameters. The 
procedure is iterated by adding the estimated corrections from the previous 
iteration step to the approximate values. As starting values for the iteration the 
scale, sH, can be set to 1. For the remaining three, (α, x0H och y0H ), 0 is a suitable 
starting value.  

Since both the TM projection and the 2D Helmert transformation contain an 
unknown scale factor as well as translations in x and y, a complication arises. If 
one tries to estimate all parameters in one single fit, the linear equation system 
becomes singular. Consequently, one has to fix one of the scale factors and one of 
the translations in x and y, respectively, to values previously determined. For 
example, one can set the TM scale to 1 and the false northing and easting to 0 and 
1500000, respectively. 

As mentioned earlier, in the initial phase of the RIX 95 project many software 
on the market lacked the possibility to perform a 2D Helmert transformation, but 
in most of them a 3D Helmert was implemented. The next section deals with the 
issue of how to combine the TM projection with a 3D Helmert transformation. 

10 Projection fit combined with a 3D Helmert 
transformation 

The transformation chain for conversion from (ϕ, λ) to (x, y), when the 
parameters once are determined, is in this case to first do a 3D Helmert followed 
by a TM projection. 

The basic problem when determining the parameters of the transformation, is 
that we do not have any given way of converting the grid coordinates (x, y) to 
geodetic coordinates (ϕ, λ). If we had, it would be a trivial matter to compute the 
parameters for the 3D Helmert transformation. Unfortunately, no observation 
equations that make it possible to estimate the parameter sets for both the 3D 
Helmert transformation and the TM projection in the same fit has been 
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formulated. Instead, a procedure founded on the following reasoning has been 
chosen.  

The task of the Helmert transformation, either it takes place in two or three 
dimensions, is to handle the rotation between the systems since it cannot be 
modelled by the TM projection. It is therefore reasonable to assume that the same 
TM projection can be used with both a 2D and a 3D Helmert transformation. 

The approach is then, as a first step, to perform a combined TM- and 2D 
Helmert fit. In the next step the projection parameters obtained are used to 
transform the grid coordinates of the common points to fictitious latitude- and 
longitude values. As a last step, a 3D Helmert fit is done between the global 
system, SWEREF 99 in our case, and the fictitious system. The procedure has the 
advantage of the same projection parameters being used whether or not the 
projection is combined with a 2D or 3D Helmert transformation. 

Since the municipal systems cover relatively small areas, the horizontal 
accordance is not significantly improved by performing the fit without height 
constraint; and there is a risk of getting unrealistically large rotations around the 
topocentric x- and y-axes in this case. One would rather want the rotations to be 
as small as possible, to make the transformation agree with the 2D Helmert 
variant. When working with RIX 95, the 3D fit is therefore made with height 
constraint, but with the heights set to zero in both systems.  

Normally the accuracy in a problem involving a fit is reduced if the 
computation is divided into two separate fits. Because of the nature of the 
problem, the chosen approach gives residuals at the same level whether you 
combine the TM projection with a 2D or a 3D Helmert transformation. The 
difference in the individual x/y coordinates is however noticeable, but generally 
does not exceed 5-10 mm. For small rotations the effect is merely 1-2 mm in some 
occasional point.  

11 Implementation in RIX 95 
Finally, a short presentation of how the transformation methods described in the 
previous sections are implemented in the computation routine used to determine 
the sets of transformation parameters in RIX 95 is given.  

As mentioned initially, a goal for the work of producing the transformation 
parameters was that they should be as accurate as possible, have as few 
transformation steps as possible and be based on standard methods implemented 
in most software for geodetic applications as well as for GIS applications. 
Undoubtedly, transformation parameters produced by projection fit meet these 
requirements. However, some manual work is needed, especially when the 
projection fit is combined with a 2D or 3D Helmert transformation. At the time of 
writing the program code for the transformation methods described in previous 
sections, there were commercial software for TM projection in which only 
relatively few digits could be entered for the longitude of the central meridian 
(λ0). If the software presented λ0 with more digits than what the user’s program 
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could accept, the user had to round it off, which could give a systematic error in 
the transformed coordinates. For example, rounding the second part off to four 
decimals gives an error of 1.5 mm in the y coordinate. If λ0 is given in degrees, 
this corresponds to eight decimals. In order to, as far as possible, reduce the 
errors of the rounding, round off of λ0 and k0 was included in these programs. 
The computation is done gradually. In step one, a regular combined fit with the 
TM projection and a 2D Helmert transformation is performed. In step two the 
parameters estimated for λ0 and k0 in step one are rounded off to an appropriate 
number of decimals, after which they are fixed to the rounded values and the fit 
is redone. The point of redoing the fit with fixed values is that the other 
estimated parameters compensate for the round off. It is important that the 
rounding of λ0 is done in degrees, since the decimal part of the degrees can 
always be converted to a finite decimal fraction in minutes or in minutes and 
seconds, while the opposite is not true. The above description of how the 
rounding is implemented is somewhat simplified, but a detailed description 
would hardly be readable.  

To improve the work of RIX 95, the programmes have been adjusted to the 
rest of the production environment. For example, apart from a text file of the 
representation of the fit, tf/tfi files (transformation files) and a GPLOT file to be 
used in GTRANS are given. In the tf/tfi files there are also geodetic coordinates 
and their transformed equivalents for the four extreme points that encircle the 
area of the fit. Appendix 2 contains examples of a text file and a transformation 
file. 

In conclusion, it can be mentioned that in Stockholm, Gothenburg and Malmö, 
the same grid system has been applied in the neighbouring municipalities, with 
local accents arising as a result. Often the local accent is of good quality within 
each municipality, but contradictions arise when working across the municipal 
borders. This means that a mutual set of transformation parameters for e g 
Greater Stockholm would give too poor an accordance in all municipalities. A 
compromise is to estimate parameters for each municipality and at the same time 
add artificial points along the municipal borders that, with appropriate 
weighting, stop the contradictions on the borders from becoming too large. The 
method of multiple fit, which is similar to photogrammetric block triangulation, 
has been implemented both for 2D Helmert and for TM projection.  

Another facility to be mentioned is that all the programmes for fitting can 
handle the problem of points having different identities in different coordinate 
files. The solution is a so called key file, where one states what identities are valid 
for each point. The multifit programmes can cope with three identities per point. 
In these programmes there is no need to gather all geodetic coordinates or grid 
coordinates in the same file, one can use a meta file with, among other things, the 
names of the files containing the coordinates. 
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Appendix 1: 3D Helmert fit without height 
constraint 

 
/*Program WOPTFIT Computation made Ferbuary 11, 2009. 
From system: SWEREF 99 lat long ellh 
To   system: RR 92 
From input file: Sw99_LatLongh.k 
To   input file: RR92.k 
Number of points found in "From"-file:   20 
Number of points found in "To  "-file:   21 
Number of common points used in the fitting:   20 
The matching of points is based on common identities of the two 
input files. 
Number of least squares iteration steps:    6 
Units: length - meter, arc - arcsec, scale - ppm (mm per km)  
Ellipsoid of FROM-system:  a=6378137.000 1:f=298.257222101 (GRS 80) 
Ellipsoid of   TO-system:  a=6377397.155 1:f=299.152812800 (Bessel 
1841) 
The "topocentres" are oriented by the following geodetic coordinates 
FROM-system:    61  16  11.003050    16   4  25.549145         .0000 
  TO-system:    61  16  11.003050    16   4  25.549145         .0000 
Geocentric coordinates of the origins of the "topocentres" 
FROM-system:   2953641.3560    851059.7834   5569851.9261 
  TO-system:   2953275.9071    850954.4833   5569274.9557 
Transformation parameters between topocentric systems (RZ*RY*RX) 
(Note, the topocentric systems are left-handed.) 
Translation  of topocentric x:       83.6859793085 m           
Translation  of topocentric y:      173.4068423468 m           
Translation  of topocentric z:      -36.6385863800 m           
Rotation around topocentric x:        3.1751605455 arcsec           
Rotation around topocentric y:       -2.2943202986 arcsec           
Rotation around topocentric z:        6.2681584553 arcsec           
             Scale correction:           .00000000 ppm (mm per km) (fixed) 
                       (Scale:    1.00000000000000) (fixed) 
Transformation parameters between geocentric systems (RZ*RY*RX) 
Translation  of  geocentric X:     -414.0978562888 m 
Translation  of  geocentric Y:      -41.3381702518 m 
Translation  of  geocentric Z:     -603.0627127551 m 
Rotation around  geocentric X:        -.8550428002 arcsec 
Rotation around  geocentric Y:        2.1413464567 arcsec 
Rotation around  geocentric Z:       -7.0227212665 arcsec 
             Scale correction:           .00000000 ppm (mm per km) 
                       (Scale:    1.00000000000000) 
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Sign of residuals: transformed minus original 

 Residuals A priori st.dev. 

Station North East Up 2D North East Up 

ARJE.0 -.0357  .0232 -7.9041 .0426 .0500 .0500 999.0000

KIRU.0 -.0389 -.0723 -7.5773 .0820 .0500 .0500 999.0000

OVER.0  .0508  .0431 -5.9735 .0667 .0500 .0500 999.0000

SKEL.0 -.0188  .0369 -5.8436 .0414 .0500 .0500 999.0000

VILH.0  .0036  .0199 -7.5933 .0202 .0500 .0500 999.0000

BORA.0 -.0505  .0267 -6.5201 .0571 .0500 .0500 999.0000

JONK.0 -.0517 -.0144 -5.9488 .0537 .0500 .0500 999.0000

SUND.0  .0191  .0077 -5.9215 .0206 .0500 .0500 999.0000

HASS.0  .0764  .0030 -5.4994 .0765 .0500 .0500 999.0000

NORR.0 -.0403 -.0331 -5.2133 .0522 .0500 .0500 999.0000

ONSA.0 -.0580  .0719 -7.0300 .0924 .0500 .0500 999.0000

VANE.0 -.0114 -.0233 -7.4501 .0259 .0500 .0500 999.0000

KARL.0  .0209 -.0453 -6.6183 .0499 .0500 .0500 999.0000

LEKS.0  .0286  .0088 -6.5250 .0299 .0500 .0500 999.0000

LOVO.0  .0506  .0168 -4.6851 .0533 .0500 .0500 999.0000

MART.6  .0155 -.0115 -5.4631 .0193 .0500 .0500 999.0000

OSKA.0  .0141 -.0534 -4.6677 .0552 .0500 .0500 999.0000

OSTE.0 -.0046 -.0144 -7.9372 .0151 .0500 .0500 999.0000

SVEG.0  .0245 -.0193 -7.3052 .0312 .0500 .0500 999.0000

UMEA.0  .0026  .0348 -5.6617 .0349 .0500 .0500 999.0000

R.m.s. .0369 .0349 6.4462 .0508    

 
Residual having largest absolute value: 
Topocentric  x-component    .0764 at point HASS.0 
Topocentric  y-component   -.0723 at point KIRU.0 
Topocentric  z-component  -7.9372 at point OSTE.0 
Topocentric 2D-component    .0924 at point ONSA.0 
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Appendix 2: Projection fit combined with a 2D 
Helmert fit 

 

Example of a text file presenting the results of a fit 
PROJFIT compiled May 04, 2004                                                    
The parameters are based on a least squares fit using a combined 
Transverse Mercator projection and 2D similarity transformation. 
The result is based on coordinates from the files 
Sweref99_latlong_h=0.k and Rotstad.k 
Geodetic coordinates: SWEREF 99 lat long 
Grid     coordinates: Rotstad lokala 
The matching of points is based on the identities of the key file 
key.txt. 
In total  119 points of file Rotstad.k was not matched with a point 
in file Sweref99_latlongh=0.k 
Number of common points:   12 
-------------------------------------------------------------------- 
Minimum and maximum coordinate values in degrees and minutes: 
Latitude                   55  54            56  14 
Longitude                  12  34            12  57 
-------------------------------------------------------------------- 
/ 
PROJECTION PARAMETERS 
PROJECTION Transverse Mercator 
REFERENCE FRAME SWEREF 99 lat long/ 
GRID SYSTEM Fictive x y / 
ELLIPSOID GRS 1980 
    6378137.000   298.2572221010 / 
CENTRAL MERIDIAN 
    13  31  42.4560000000 / 
SCALE 
     .999972040000 / 
FALSE NORTHING 
  -6203871.2490 / 
FALSE EASTING 
     61645.0200 / 
LATITUDE OF ORIGIN 
          .0000 / 
END OF PROJECTION PARAMETERS 
  
/*------------------------------------------------------------------ 
  
HELMERT PARAMETERS / 
FSYSTEM Fictive x y / 
TSYSTEM Rotstad lokala/ 
AREA          -5250.          1700.         29582.         25040. 
/ 
FORMEL PLAN 
6-PAR HELMERT 
     -646.511370993850300   9.989597174353925E-001   
4.560132414182313E-002 
      604.239294856388700  -4.560132414182313E-002   
9.989597174353925E-001 
/ 
END OF HELMERT PARAMETERS 
  
HELMERT INVERSE PARAMETERS / 
FSYSTEM Rotstad lokala/ 
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AREA          -5250.          1700.         29582.         25040. 
/ 
TSYSTEM Fictive x y / 
FORMEL PLAN 
6-PAR HELMERT 
      673.392929897349200   9.989597196110401E-001  -
4.560132424113886E-002 
     -574.128941913437000   4.560132424113886E-002   
9.989597196110401E-001 
/ 
END OF INVERSE HELMERT PARAMETERS 
  
/*------------------------------------------------------------------ 
  
RESIDUALS 
/* Sign of residuals: transformed minus original grid coordinates 
                           North        East      Radial 
  732311   1               -.107        .008        .107 
  732631   29               .001        .014        .014 
  732121   57               .058       -.054        .079 
  732041   58               .014       -.049        .051 
 7327190   60               .001       -.031        .031 
732531.2   598              .039        .084        .093 
 7323190   10111           -.095        .009        .095 
 7324090   10113           -.074       -.046        .087 
 7315990   10116            .057       -.009        .058 
732122.2   732122.2         .046        .002        .046 
  732241   732241           .057        .030        .065 
  732611   732611           .002        .043        .043 
  
R.m.s.                      .057        .040        .070 
Max deviation              -.107        .084        .107 at   732311   
1        
 
Number of common points       12 
 
/*------------------------------------------------------------------ 
  
DESCRIPTION OF THE 2-DIMENSIONAL HELMERT TRANSFORMATION 
  
The parameters should be used with the algebraic formula: 
  
xt = dx + Scale * ( xf * cos(Rot.) - yf * sin(Rot.) ) 
yt = dy + Scale * ( xf * sin(Rot.) + yf * cos(Rot.) ) 
  
Let a = Scale * cos(Rot.) and b = Scale * sin(Rot.) then 
  
xt = dx + a * xf - b * yf 
yt = dy + b * xf + a * yf 
  
/*------------------------------------------------------------------ 
  
Parameters for the direction Fictive x y   ->  Rotstad lokala 
  
Rot.  =    -2.904077551862 gon (  -2.613669796676 degr.) 
Scale =  .9999999989110433 
dx    =         -646.51137 m.  (translation along South-North axis) 
dy    =          604.23929 m.  (translation along West - East axis) 
a     =  .9989597174353924 
b     = -.0456013241418231 
  
/*------------------------------------------------------------------ 
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Parameters for the direction Rotstad lokala  ->  Fictive x y  
  
Rot.  =     2.904077551862 gon (   2.613669796676 degr.) 
Scale = 1.0000000010889570 
dx    =          673.39293 m.  (translation along South-North axis) 
dy    =         -574.12894 m.  (translation along West - East axis) 
a     =  .9989597196110401 
b     =  .0456013242411389 
  
/*------------------------------------------------------------------ 
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Example of a transformation file (tf-file) ready to use in GTRANS 

 
/* PROJFIT compiled May 04, 2004                                                    
  
TRANSFORMATION details 
  
The parameters are based on a least squares fit using a combined 
Transverse Mercator projection and 2D similarity transformation. 
  
Ellipsoid: GRS 1980 
  
TRANSVERSE MERCATOR PARAMETERS 
Central meridian                13  31  42.456000 degr. min. sec. 
Scale along central merdian         .999972040000 
False northing                      -6203871.2490 m 
False easting                          61645.0200 m 
  
/ 
FSYSTEM SWEREF 99 lat long/ 
LATLONG DEG/ 
TSYSTEM Rotstad lokala/ 
AREA          -5250.          1700.         29582.         25040./ 
ELLIPSOID GRS 1980/ 
PROJ Gauss 
G     13  31 42.4560000000 DEG 
  -6203871.2490 
     61645.0200 
     .999972040000 / 
SYSTEM Fictive x y / 
FORMEL PLAN 
6-PAR HELMERT 
     -646.511370993850300   9.989597174353925E-001   
4.560132414182313E-002 
      604.239294856388700  -4.560132414182313E-002   
9.989597174353925E-001 
/ 
GRUNDMEDELFEL            .055     19 / 
STOP / 
Number of common points          12 
 
/*------------------------------------------------------------------ 
  
DESCRIPTION OF THE 2-DIMENSIONAL HELMERT TRANSFORMATION 
  
The parameters should be used with the algebraic formula: 
  
xt = dx + Scale * ( xf * cos(Rot.) - yf * sin(Rot.) ) 
yt = dy + Scale * ( xf * sin(Rot.) + yf * cos(Rot.) ) 
  
Let a = Scale * cos(Rot.) and b = Scale * sin(Rot.) then 
  
xt = dx + a * xf - b * yf 
yt = dy + b * xf + a * yf 
  
/*------------------------------------------------------------------ 
  
Parameters for the direction Fictive x y   ->  Rotstad lokala 
  
Rot.  =    -2.904077551862 gon (  -2.613669796676 degr.) 
Scale =  .9999999989110433 
dx    =         -646.51137 m.  (translation along South-North axis) 
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dy    =          604.23929 m.  (translation along West - East axis) 
a     =  .9989597174353924 
b     = -.0456013241418231 
  
/*------------------------------------------------------------------ 
  
The coordinates used in the fitting process are taken from the 
files: 
Geodetic   coordinates: Sweref99_latlong_h=0.k 
Plane grid coordinates: Rotstad.k 
  
Geodetic system name: SWEREF 99 lat long 
Grid     system name: Rotstad lokala_lokalt 
  
Further details of the computation are given in the file 
Rix_chk_S2_1. 
/*------------------------------------------------------------------ 
Worked example, (4 corners surrounding the valid area) 
                      Latitude             Longitude       
Northing(m)    Easting(m) 
South-west   55°  54'   .00000"    12°  34'   .00000"        -
6769.862      2369.249 
South-east   55°  54'   .00000"    12°  57'   .00000"        -
5943.070     26333.935 
North-west   56°  14'   .00000"    12°  34'   .00000"        
30326.446      1193.302 
North-east   56°  14'   .00000"    12°  57'   .00000"        
31145.096     24952.114 
/*------------------------------------------------------------------ 
End of information. 
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